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I

AN ALPHABETICAL LIST OF

THE CHIEF GREEK MATHEMATICIANS

WITH THEIE APPROXIMATE DATES.

(N.B. All dates are b.c., unless a.d. is expressly prefixed.)

Anaxagoras,

Flor. cir.

460 Joh. Philoponus,

Flor. cir,

A.D. 650

A pimander, ' 560 Menaechmus, 340

aximenes. 630 Menelaus, A.D. 100

/tiphon. 430 Metrodorus, A.D. 320

ollonius. 230 Nicomachus, A.D. 100

chimedes. 250 Nicomedes, 180

chytas. 400 Nicoteles, 250

istaeus. 320 (Enopides, 460

istotle. 340 Pappus, A.D. 300

kclepius Trail., A.D. 600 Perseus, 150

|utolycus, 340 Philippus, 320

|ryson, 430 Philolaus, 430

'onon, 250 Philon Byz., 150

j)eniocritus, 410 Plato, 380

binostratus, 320 Proclus, A.D. 450

iDiocles, 180 Ptolemy, A.D. 150

/Diophantus, A.D. 360 Pythagoras, 530

Eratosthenes, 250 Serenus, A.D. 50

Euclid, 290 Sextus J. Afric., A.D. 200

Eudemus, 320 Simplicius, A.D. 550

Eudoxus, 360 Thales, 600

Eutocius, A.D. 550 Theaetetus, 380

Geminus, 70 Theodorus, 420

Heron, 120 Theodosius, 60

Hipparchus, 130 Theon, Alex., A.D. 380

Hippias, 430 Theon, Smyrn., A.D. 100

Hippocrates, 430 Theudius, 320

Hypatia, A.D. 410 Thymaridas, A.D. 250

Hypsicles, 180 Zeno, 450

lamblichus. A. D. 340 Zenodorus, A.D. 150



At haec omnia ita tractari praecipimus iit non criticorum

more in laude et censura tempus teratur
;
sed plane historice res

ipsae narrentur, judicium parcius interponatur. De modo autem

hujusmodi historiae conficiendae illud inprimis monemus, ut...

seriatim (ab ultima antiquitate facto principio) libri praecipui

qui per ea temporis spatia conscripti sunt in consilium adhibe-

antur, ut ex eorum non perlectione (id enim infinitum quiddam

esset) sed degustatione et observatione argumenti, stili, methodi,

Genius illius temporis Literarius veluti incantatione quadam a

mortuis evocetur.

Bacon, De Augm. ii. iv.
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PEEFACE.

The history of Greek mathematics is, for the most part, only

the history of such mathematics as are learnt daily in all

our public schools. And very singular it is that, though

England is the only European country which still retains

Euclid as its teacher of elementary geometry, and though

Cambridge, at least, has, for more than a century, required

from all candidates for any degree as much Greek and mathe-

matics together as should make this book intelligible and

interesting, yet no Englishman has been at the pains of

writing, or even of translating, such a treatise. If it was not

wanted, as it ought to have been, by our classical professors

and our mathematicians, it would have served at any rate to

quicken, with some human interest, the melancholy labours

of our schoolboys.

The work, as usual, has been left to Germany and even

to France, and it has been done there with more than usual

excellence. It demanded a combination of learning, scholarship

and common sense which we used, absurdly enough, to regard

as peculiarly English. If anyone still cherishes this patriotic

delusion, I would advise him to look at the works of Nessel-

mann, Bretschneider, Hankel, Hultsch, Heiberg and Cantor,

or, again, of Montucla, Delambre and Chasles, which are so

frequently cited in the following pages. To match them we

can show only an ill-arranged treatise of Dean Peacock, many

brilliant but scattered articles of Prof. De Morgan, and three

essays by Dr Allman. I have treated all these writers with
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freedom and have myself added matter which is not to be found

in any of them, but they strike me still with humiliation such

as a classical scholar feels when he edits a text which Bentley

has edited before him.

My own book represents part of a collection of notes

which I have for many years been making with a view to

a general history of the great city of Alexandria. The fact

that the history of Alexandrian mathematics begins with the

Elements of Euclid and closes with the Algebra of Diophantus,

both of which are founded on the discoveries of several pre-

ceding centuries, made it necessary that I should extend my
inquiries over the whole field of Greek mathematics. In

this way, the materials for an account of the Alexandrian

Mathematical School grew to exceed the reasonable limits

of a chapter, and I have thought it desirable to publish them

as a separate essay. I shall treat the Literary School with

the same fulness.

As a history of Alexandria ought to be interesting to

most people, I took especial pains that my treatment of the

Mathematical School, which was the oldest, the most con-

spicuous and the longest-lived of them all, should not be

excessively technical. I have tried to put my account of it

generally in such a form as should be useful and attractive to

readers of various tastes. As a matter of fact, mathematicians

will here find some account of every extant Greek mathe-

matical book and a great number of pretty proofs translated

from the ipsissima verba of the ancients. Greek scholars will

find nomenclature and all manner of arithmetical symbols

more fully treated than in any other work. A student of

history, who cares little for Greek or mathematics in par-

ticular, but who likes to watch how things grow, will be able

to extract from these pages a notion of the whole history

of mathematical science down to Newton’s time, and will find
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some very curious questions raised which it is his especial

duty to answer. It was impossible to satisfy the requirements

of all readers, but each will perhaps be willing to concede

something to the claims of the others, and wherever a subject

is introduced but inadequately treated, I'have at least given

references to sources of fuller information, if any such exist

to my knowledge.

As the whole book is an endeavour to compromise between

conflicting claims, I have allowed myself, with the same intent,

some inconsistency in two details. • In the first place, I have not

drawn a strict line between pure and mixed mathematics, but have

given an account of the Phaenomena and Optics of Euclid and

the mechanical books of Aristotle and Archimedes, while I have

omitted any summary of Ptolemy’s astronomical theories. The

former are books which are little known, which are short, which

came in my way and which are almost purely deductive. A com-

plete history of Greek astronomy is tolerably common, is long,

is founded for the most part on non-mathematical writers and

would consist largely of a history of astronomical observations.

In the second place, I have tried to write proper names

(following indeed Smith’s Dictionary of Grech and Roman

Biography) in a way which should generally indicate the

Greek form and pronunciation without offending the ordinary

eye. I have always written c for k and final -ns for -09. I

have generally not Latinized names ending in -wv, because it is

sometimes inconvenient and the Latin usage was inconsistent

with itself
;

for instance, it retained Conon but altered Platon.

I have left in their English form, the names of well-known

writers. Thus the reader will find Plato, Aristotle and Euclid

side by side with Heron, Nicoteles and Neocleides. If I must

offend somebody, I would soonest offend a pedant.

The complete MS. of this book left my hands last January

and the whole edition has been printed off, sheet by sheet,
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at various intervals, since that time. I have therefore been

unable to correct any errors or omissions which I observed too

late or to incorporate new matter which appeared after the

sheet to which it was relevant had gone to press. The chief

notices which I wish to insert are given in the Addenda

which immediately follow this preface.

My work, dreary as it has often been, has been enlivened

by one constant pleasure, the interest and unselfish assistance

of many friends. Two of them, in particular, deserve recogni-

tion very near the title-page. The first is Mr F. T. Swanwick,

late scholar of Trinity College, Cambridge, and now Mathemati-

cal Lecturer in the Owens College. He has, with incredible

care and patience, read through the whole book from page 6G,

has made a hundred valuable suggestions and has saved me

a hundred times from myself. The other is Mr Joseph Jacobs,

late scholar of St John’s College, Cambridge, whose wide

intellectual interests and unsurpassed knowledge of bibliography

have made the book far more useful and entertaining than

it otherwise would have been. I would say more of their

kindness to me but that I would not have them held respon-

sible for any slips which they may have overlooked in my work

but would not have made in their own.

JAMES GOW.

Lincoln's Inn.

October^ 1884.



ADDENDA.

P. 24. The relevant passages of Nicolaus Smyrnaeus and Bede are

printed, with an interesting plate, by M. Froehner in an article

on certain Roman tesserae in Annuaire de la Soc. Afumismatique,

Paris, 1884. Mr A. S. Murray gave me the article in pamphlet

form, newly paged.

P. 44. Prof. Robertson Smith informs me that gematria is certainly

from yeco/terpia, by a common Semitic transliteration.

P. 108 n. 3. In Journal of Philology

,

xiii. No. 25. pp. 107—113,

Mr T. L. Heath, after proving by new evidence that the

algebraic s of Diophantus is not the final sigma, shows that

f occurs in cursive MSS. as an abbreviation of dpLOfxos, used in its

ordinary sense, for which also dp. is sometimes found. Hence he

suggests that Diophantus’ ? is merely a contraction of dp. This

theory is pretty but I do not think it is true, for three reasons.

(1) The contraction must be supposed to be as old as the time

of Diophantus, for he describes the symbol as to s instead of rd

or T« dp. Yet Diophantus can hardly (as Mr Heath admits)

have used cursive characters. (2) The abbreviation 9° for

dpi0pi6<5 in its ordinary sense is very rare indeed. It is not

found in the MSS. of Nicomachus or Pappus, where it might

most readily be expected. It may therefore be due only to a

scribe who had some reminiscence of Diophantus. (3) If 9 is

for dp., then, by analogy, the full symbol should be 9‘ (like 8*’, k^)

and not f.

Pp. 110, 111. n. In the Gottingen Nackrichten, 1882. pp. 409—413,

Prof. P. De Lagarde suggests that the x of modern algebra is

simply the regular Spanish representative of the Arabic letter,

which is the initial of shai, the Arabic name of the unknown
quantity. This may be (but I believe is not) true of Luca

Pacioli, Tartaglia and other early Italian algebraists. The

accounts which I have seen of their works are inconsistent and

inconclusive. But their more important successors had no

prepossession whatever in favour of x. Wallis (in his Algebra,
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1685. p. 127.), says “Whereas it was usual with Harriot (as

before with Yieta and Oughtred) to put consonants C, D, &c.,

for known quantities and vowels, A, E, I &c., for unknown,

Descartes chooseth to express his unknown quantities by the

latter letters of the alphabet (as z, y, x) and the known by the

former letters of it as a, 6, c, &c.” Thus Descartes probably

set the fashion, but he may have resumed an old tradition.

P. 129. There seems to be a reference to a Hebrew harpedonaptes

in Micah ii. 5.

pp- 182—185. Dr Allman, in Hermathena No. x., has another

paper on Greeh Geometry from Thales to Euclid. This deals

very elaborately with Archytas and Eudoxus.

Pp. 189 and 238. A statement that the parallelogram of forces was

known to Aristotle was struck out of p. 189 as incorrect, but

by accident, no substitute was inserted. The omission is rectified

on p. 238.

P. 204. There is a very remarkable article by Dr Klamroth “fiber

den Arabischen Euclid” in Zeitschr. Deutsch. Morgerdand^. Ge-

sellsch. 1881, pp. 270—326. This gives a most careful account

of the Arabic texts of Euclid. It would appear that Euclid’s

Elements was the first Greek book translated into Arabic.

P. 208. In the American Journal of Math. ii. pp. 46—48,

Mr G. B. Halsted has a ‘ Note on the First English Euclid ’ from

which it appears, among other things, that Billingsley became

Sir Henry Billingsley, and was Lord Mayor of London in

1591.

Pp. 263 and 277 I have wrongly followed Thevenot and Fabricius

in the note on p. 277. The Philon mentioned by Vitruvius was

an Athenian architect and is clearly not the engineer Philon, part

of whose work is in the Veteres Mathematici. The latter Philon

seems to be identical with Philon of Byzantium, who is

mentioned on p. 263. If so, then Philon of Byzantium had

certainly heard Ctesibius lecture and must be assigned to a date

about 150 B.c.

Philon’s construction should have been given on p. 263.

He describes a circle about the rectangle ABDG. A ruler,

cutting AB produced in F, AG produced in G, and the circle in

//, D, is turned about the point B until FH equals DG. The

line FHBG is called “Philo’s line” in modern geometry, but its

author did not know its singular property.
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PAET I. PROLEGOMENA TO ARITHMETIC.

CHAPTER I.

THE DECIMAL SCALE,

1 , In the book of ProUemata, attributed to Aristotle, tbe

following question is asked (xv. 3) :
“ Wby do all men, botb

barbarians and Hellenes, count up to 10 and not to some other

number?” It is suggested, among several answers of great

absurdity, that tbe true reason may be that all men have ten

fingers^: “using these, then, as symbols of their proper number

(viz. 10), they count everything else by this scale.” The writer

then adds “Alone among men, a certain tribe of Thracians

count up to 4, because, like children, they cannot remember

a long sum neither have they any need for a great quantity of

anything.”

It is natural to regret that an author who at so early a date

was capable of writing this passage, was not induced to ask

himself more questions and to collect more facts on the same

and similar subjects. Had he done so, he might have anti-

cipated, by some two thousand years, the modern method of

research into prehistoric times and might have attempted, with

every chance of success, a hundred problems which cannot now

be satisfactorily treated I In the fourth century B. c. and for

long after, half the Aryan peoples were still barbarous and there

must still have survived, even among Greeks and Italians,

countless relics of primitive manners, forming a sure tradi-

1 Cf. Ovid, Fasti in. v. 121 sqq. lines as would be taken by a modern
2 It seems probable that Aristotle evolutionist. See Sir H. Maine, Early

himself was inclined to reconstruct Law and Cusiom, pp. 196, 197.

primitive history on much the same

G. G. M. 1



2 THE DECIMAL SCALE.

tion of the past. Nearly all these materials, so abundant in

Aristotle’s day, are irretrievably lost to us and the primeval

history of Aryan culture depends now chiefly on the evidence

supplied by comparative philology. It is so with the art of

calculation. We may assume evolution and, by careful com-

parison of the habits of the existing lower races, we ma}^ form

ah extra a theoretical history of arithmetic among our fore-

fathers; but almost the whole (so to say) internal evidence

is concealed in a few numeral words. To the etymology of

these a few pages may here be fitly devoted, not only because it

is habitual with our generation to commence every inquiry

from the beginning of things, but also because Greek arithmetic

offers no other prehistoric inquiry but this, because, in fact,

ordinary Greek calculation remained to the last so clumsy and

primitive, that if any progress in the art is to be ascribed to

the Greeks, it can be exhibited only by going back to the

beginning.

2. The words for 1000, and every higher power of 10,

are different in all the great branches of the Aryan family

of languages, and the cardinal numerals up to that limit are

manifestly derived, by mere addition or composition, from the

first ten. These last, therefore, are of by far the greatest

interest and importance and the present inquiry may be

confined to them. Before examining the individual words,

however, it will be well to consider the whole group. The

first three are adjectives, agreeing with only casual and partial

exceptions {e.g. hvo) in gender and case with the substantives

^ which they qualify. The same might be said of the fourth, but

that in Latin quattuor is wholly indeclinable. The rest, from

five to ten, are generally uninflected and have or had originally

the form of a neuter singular In Sanskrit, indeed, these six

numerals are declined as adjectives but they do not take the

gender signs and in older writers are often employed without

any inflexions at all In old Slavonic they are extended by

a suffix (as in Semitic tongues) into abstract nouns of the

1 The final sibilant of ‘six,’ ‘sex,’ primeval. Schleicher, Vergl. Gram. §

etc. is part of the root, and the ap- 237. 6 and 8.

parently dual ending of octo is not - Whitney, Sanskrit Gram. § 486c.
j
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feminine singular and are so declined^ (cf. Gr. TTeixird^ etc.),

but this usage is also obviously late and may be ignored in

a general discussion of the origin of the words. For the present \

purpose, it may be stated broadly that the first three are

adjectives, the fourth is generally an adjective but sometimes

an uninflected noun, the remaining six are uninflected nouns

only. All of them, in all Aryan tongues, are constructed of

the same materials, which, moreover, seem familiar enough

in different connexions. The difficulty is how to adapt the

apparent meanings of the roots to a numerical signification.

Some metaphor probably underlies each word, but though

metaphor, as we shall see, is competent to make numerals, it is

not able to extend their application. Things are not eight or

ten by a metaphor. They are so as a pure matter of fact, and

we are thus debarred from inferring the original meanings of the

numerals from any subsequent usage of them by transference.

The propriety of each numeral to its signification must be

explained a priori or not at all. And this, apart from any

linguistic difficulties, constitutes the chief objection to the

etymologies hitherto proposed by Bopp, Lepsius, Pott and

others^ Sometimes they do not explain the choice of the

particular name, sometimes they involve patent anachronisms.

When for instance they say that pankan and saptan,
‘
five ’ and

‘ seven,’ mean ‘ following,’ because they follow ‘ four ’ and ‘ six
’

^ Bopp, Comp, Gram. § 313. Stade,

Lehrh. der Hebr. Spr. p. 216.

^ Bopp, § 308 sqq. Pott, Die qui-

ndre etc. Zdhlmethode, pp. 130 sqq.

On p. 142 Pott, discussing Lepsius’ de-

rivations, points out that he ascribes

to 1 (besides its original eka) the forms

k, tsh, p and g in the composition of

the other numerals. The common
derivations, taken chiefly from Bopp,

are set out in Morris, Hist. Outlines

of Eng, Accidence, p. 110 n. The
following only need be cited

:

T/iree= ‘what goes beyond’ (root tri,

tar, to go beyond).

Four (quattuor) = ‘ and three,’ i.e. 1

and 3 : or else ka, qua— 1.

^^6= ‘that which comes after’ (four).

Sk. pashclidt=d£tex.

Six, Sk. shash is probably a compound

of two and four.

Seven= * th&t which follows’ (six).

Eight, Sk. ashtdn= 1 + and+ 3.

Nine=new==-ih3A which comes after 8

and begins a new quartette.

Ten= i^o and eight,

Pott, in Etym. Forschungen, 2nd ed.,

1859, I. p. 61 n., declares his opinion

that the numerals are derived from

names of concrete objects, but suggests

no particular etymologies.

1—2
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respectively, they suggest no reason why any other numeral

above 1 should not have been called by either or both of these

names : so when they say that navan, ‘ nine,’ means ‘ new ’

(veo<; etc.) because it begins a new quartette, they assume a

primeval quaternary notation and do not explain why ‘ five
’

was not called navan; so again when they say that navan

means ‘last’ etc.) because it is the last of the units,

they evidently speak from the point of view of an arithmetician

who has learnt to use written symbols. What one really wants,

in this as in so many other problems of philology, is to get at

the point of view of the primitive language-maker and to see

from what sources he was likely to get his numerals. And
this can only be done by a careful examination of the habits

and languages of modern savages.

3 . It is probably familiar enough to most readers that

many savage tribes are really unable to count, or at least have

no numerals, above 2 or 3 or 4, and express all higher numbers

by a word meaning ‘ heap ’ or ‘ plenty,’ and that every natiou,

which can count further than this, uses a quinary or decimal or

vigesimal notation or a combination of these which is generally

founded on, and expressly referred to, the number of the fingers

and toes. These facts, which are beyond dispute^, suggest two

initial questions, first, what is the real difficulty which a savage

finds in separating the units which go to make a multitude ? and

1 No nation has a purely quinary or

vigesimal notation at all. The Mayas

of Yucatan, however, and the Aztecs

have special words and signs for 20,

400 and 8000. Pott, Zahlmethode supr.

cit. pp. 93, 97, 98. Wilson, Prehistoric

Man, II. p. 61.

2 See, for instance, Pott, Die quin.

Zahlmethode, etc., with an appendix

on Finger-names, supra cit. : Pott,

Die Sprachverschiedenheit in Europa

etc., on the same subject, being a

Festgabe zur xxv. Philologenversamm-

lung

:

and an article by the same

writer in Zeitschr. fur Vdlkerpsycho-

logie, Vol. xii. These will be cited

hereafter as Pott, Zcihlm., Festgabe and

Zeitschr. respectively. Also Tylor,

Primitive Culture, i. ch. 7 : Lubbock,

Orig. of Civilisation, ch. 8, and Prehist.

Times (4th ed.), p. 588. Another col-

lection of similar facts will be found

in Dean Peacock’s article ‘ Arithmetic ’

in the Ency. Metropolitana. It may be

added here that the Maoris are said to

use an undenary scale (Pott, Zdhlm.

pp. 75 and 76) in which rests are taken

at 11, 121, 1331, etc., but this is

doubted. The Solans or Buramans of

W. Africa are also said to use a senary

scale (Pott, Festgabe, p. 30). These

cases, if correctly reported, seem to be

the only complete exceptions to the

rule stated in the text.
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secondly, why are the fingers—which, one would say a priori,

are as hard to count as any other collection of five or ten

things—always adopted as the means and basis of calculation ?

The answer seems to be, at least in part, as follows. A savage

knows large and familiar things by special distinguishing marks

and these special peculiarities prevent him from forming, in the

case of such things, the generalizations which are essential to

arithmetic. A black cow and a dun cow, a tall child and a short

one, a wood-chopper and a battle-axe, his own hut and his

neighbour’s, are not, to him, essentially similar, but essentially

different from one another and from everything else, to be

spoken of by proper and not by generic names, not forming part

of a class and therefore not requiring to be counted. In respect

of these things, he does not count, he enumerates

:

as if a man,

when asked how many children he has, should say, not that he

has 3 or any other number, but that he has Tom and Susan

and Harry and so on, naming each individual. With small or

unfamiliar things, on the other hand, with beans or fruits, for

instance, or strangers from another tribe, the savage, though he

is compelled to generalize, is not necessarily compelled to

count, for there are many ways of roughly indicating a quantity,

without knowing its component parts. Everybody has tried the

difficulty of counting quickly a number of spots irregularly

disposed, and what we are unable to do quickly, a savage may
well be unable to do at all. In order to count a heap correctly,

it is essential that the same thing be not counted twice, and

1 Compare Lubbock, Orig. of Civil.

pp. 292—294, and the quotations from

Galton and Lichtenstein, as to the

special knowledge of individual animals

by which a savage, unable to count a

high number, keeps his herds together

and conducts his barter. Tylor {Prim.

Cult. I. p. 303 and passim) gives

abundant examples of proper names

applied by savages to inanimate objects.

The same writer (i. p. 254) relates that

some Australians, as well as other

j

tribes, have a series of nine proper

j

names which they give to their children

in order of seniority and which might

well serve for numerals, yet they can-

not actually count above 2. So also,

according to Dr Bae (eit. Lubbock,

Prehist. Times, p. 525), many Eskimos,

who are said by Parry (also loc. cit.)

to have numerals up to 10 at least,

cannot count their children correctly

even when they have only four or five.

But quaere, whether a man, who could

not count his own children, would find

the same difficulty in counting a num-
ber of strangers.
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this, to the unpractised calculator, can be secured only by

arranging the things in such a form that the counting may
follow a definite direction from a fixed beginning to a fixed end.

Given such an arrangement, it is further necessary that the

calculator should have words or other symbols to serve as a

memoria technica of each successive total, otherwise he will be

as ignorant at the end of the counting as he was at the

beginning. But a savage, who eoo hypothesi is making his first

essay in counting, can hardly be expected both to arrange his

units and to invent his symbols immediately. Time and

practice and some hard thinking are obviously necessary before

he can master both operations.

4. These difficulties, however, are soonest surmounted

with very small numbers, of which any arrangement is bound

to be more or less symmetrical and of which so definite an

image may be retained in the memory that names or symbols

are unnecessary for the mere operation of counting. But some

means of communicating a total, and, with a higher number,

some memoria technica of the arrangement adopted are still

wanting. For both these purposes, the fingers and toes are

especially well adapted. They are a moderate number of

similar things, easily generalized, symmetrically disposed and

arranged in four groups of small contents. They can be so

moved, shown, concealed or divided, that they will exhibit any

number under 21 : they are so familiar that the eye is

constantly practised in counting them, and they are so uni-

versally supplied to human beings that they can be used to

communicate arithmetical results.

But men did not arrive at this use of the fingers till they had

already made some little progress in calculation without them.

That this is the true history of the art of counting is evident

if we consider the following facts in order. First, there is

hardly any language in the world in which the first three, or

four numerals bear, on the face of them, any reference to the

fingers. Secondly, there are many savage languages in which

these numerals are obviously taken (not from the fingers but)

from small symmetrical groups of common objects. Thus,

‘two’ is, among the Chinese, ny and cexd, which also mean
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‘ ears :
’ in Thibet paJcsha ‘ wing :

’ in Hottentot fKoam ‘ hahd :

’

and so also among the Javanese, Samoyeds, Sioux and other

peoples. So again with the Abipones, ‘four’ is geyenknate,

‘ostrich-toes:-’ ‘five’ is neenhalek, ‘a hide spotted with five

colours :
’ with the Marquesans ‘ four ’ is pona, ‘ a bunch of four

fruits,’ etc.^ Thirdly, there are also many savages who, having

only a very few low numerals, count to much higher numbers

dumbly by means of the fingers ^

5. But just as, in the examples quoted above, the name

of the pattern group (e.g. ears or hands) becomes the name of

the number which that group contains, so with finger-counting

the savage, advancing in intelligence, begins to name the

gesture with or without performing it, and this name becomes

the symbol of the number which the gesture is meant to

indicate. Hence all the world over, in nearly every language

under the sun where names for the higher units exist and show

a clear etymology, the word for ‘five’ means ‘hand,’ and the

other numbers, up to 10 or 20, as the case may be, are merely

descriptive of finger-and-toe-counting. In Greenland, on the

Orinoco, and in Australia alike, ‘ six ’ is ‘ one on the other hand,’

‘ ten ’ is ‘ two hands,’ ‘ eleven ’ is ‘ two hands and a toe ’ and

‘twenty’ is ‘one man^’ In some cases, we find even greater

definiteness. Among the Eskimos of Hudson’s Bay the names

of the numerals ‘ eight,’ ‘ nine ’ and ‘ ten ’ mean respectively the

‘ middle,’ ‘ fourth ’ and ‘ little finger,’ and the same use of actual

finger-names is observed also among the Algonquin Indians of

North America, the Abipones and Guarani, of the South,

the Zulus of Africa and the Malays of the Asiatic islands

^

6 . Enough has now been said, or at least references

enough have been given, to show that wherever a quinary,

decimal or vigesimal notation is adopted in counting, there

1 For other examples, and especially low numbers (e.g. couple). See also

for a curious set of Indian poetic Farrar, Chaps, on Lang. pp. 198—201.

numerals, in which e.g. ‘moon’ stands ^ Tylor, Prim. Cult. i. p. 244.

for 1 and ‘teeth’ for 32, see Tylor, ^ Tylor, Prim. Cult. i. pp. 247

—

Prim. Cult. i. pp. 252, 253, 256, 259, 251.

and reff. Civilised peoples {ib. p. 257) ^ Pott, Zdhlm. pp. 190 and 301,

sometimes employ a similar nomen- Zeitschr. pp. 182, 183, Festg. pp. 47, 48,

clature, though not often with very 83,
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is the strongest possible presumption that the notation is

founded on the number of the fingers and toes : and secondly,

that wherever these scales are used and the etymology of the

numerals is obscure, the most likely explanation will connect the

higher units with the gestures used in finger-and-toe-counting.

If we turn, then, to the languages of the Aryan peoples, we

shall find many signs that they acquired the art of calculation

slowly and by precisely the same modes as we see in practice

among modern savages. There is no word for ‘counting’

common to all the Aryan tongues, but the special words

generally mean ‘to arrange’ or ‘to group’ (apiOfielv^, numerare,

rechnen) and a similar notion must underlie the double uses of tell,

putare, Xeyetv. Again, three numbers only are distinguished in

the inflexions ofnouns and verbs, viz. the singular, dual and plural.

This, like the three strokes which mark plurality in Egyptian

hieroglyphics, seems to point to a time when 3 was the limit of

possible counting. It is noticeable also, in this regard, that

‘ three ’ always retained a notion of great multitude : that

Sanskrit employs, for this numeral, two distinct roots, tri- and

tisar-^

;

and that, after ‘three,’ the first divergence appears

in the grammar of the Aryan numerals. The common use of a

duodecimal notation in measurements of length and capacity

and the sudden variation in the grammatical position of

‘four’ may be taken as evidence that ‘four’ was a separate

addition to the numerals and that 3 and 4 were for some

time used together as limits of the groups used in count-

ing ^ The use of and manus to signify ‘a number,’

^ Cf. Odyssey x. 204. 5txa dpLdjxeiv

must originally have meant ‘ to arrange

in two groups. ’

2 Cf. rpiaddXios, ter felix, dia rpiwv

in Eur. Or. 434. The suggestion was

W. von Humboldt’s. That about the

dual and plural was Dr Wilson’s. See

Tylor, Prim. Cult. i. p. 265.

^ Cf. Irish tri, masc. : teoir, teoira,

fern. : Welsh to-i, masc. : teir, fern.

^ Hence also Pindar’s rpls rerpaKi re,

Horace’s terque quaterque beati, etc.

(cf.n. 2). In hieroglyphic numeral-signs,

though the system is denary, units,

tens, etc. are grouped by threes and

fours and not by fives, (e.g. 7 is written,

invariably, and similarly for 70,

700, etc.). Observe also that Egyptian,

like Aryan, had a dual. The occasional

use of more than one group-limit in

counting is common enough. Thus,

beside the examples given a little later

in the text, the Bas-Bretons use trio-
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the common phrases eVl BaKTvXcov o-vfi^aWeaOai and digitis

computare and many references in ancient authorities^ suf-

ficiently attest the practice of finger-counting in the earliest

historical times, and there are some signs that the practice was

not yet settled before the separation of the Aryan races. Thus

the Homeric TrefjiiTd^eiv (lit. ‘to five’), meaning ‘to count/

and the form of the Latin numeral signs imply the occasional

use of a quinary notation, while the Kelts and Danes use,

to some extent, a vigesimal (e.g. quatre-vingts)

,

from which we

derive our habit of counting by scores.

7. A further question still remains, whether any connexion

can be traced, in the Aryan languages, as there certainly can in

most savage tongues, between the first ten numeral words and

the gestures used in counting with the fingers. It has been

already pointed out that in Aryan languages there is a difference

in kind between the first three or four numerals and the last

seven or six. The former are adjectives and are so inflected :

the latter are nouns neuter in form and uninflected ^
;
inter-

jections, as it were, thrust into the sentence in brackets, like

the dates in a history-book. This difference in kind seems to

point to a difference in etymology and also in antiquity. The
higher numerals, being nouns, are names of things and, being

uninflected, are names of things which are not really connected

with, and subject to the same relations as, the other things

mentioned in the same sentence. Secondly, the general abrupt-

ness of the transition from low inflected numerals to higher

uninflected forms points to some sudden stride in the art of

counting. All the facts are readily explained if we conceive

that among the Aryans, as among many other races, the

counting of low numbers was learnt before the use of the

fingers suggested itself, and that so soon as the fingers were

seen to be the natural o.hacus, a great advance in arithmetic

uech
(
= 3x6) for 18: the Welsh have ‘morra’ is of very remote antiquity

dennaw
(
= 2x9)

: the old Frisian has and, like most games, seems to be de-

tolftich (
= twelvety) for 120. See scended from a serious exercise,

further Pott, Festg. pp. 33 and 38. 2 pott, Festg. p. 40, points out that
1 Boethius (p. 395, 3 sqq. ed. Fried- inflexions begin again with the com-

lein) says the ancients used to call • pounds of ten (e.g. triginta, a neuter
the units ‘digiti.' The Italian game plural, trecenti, etc,).
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was immediately made. The higher unit-numerals would then

be the names of the gestures made in finger-counting or, as

among the Algonquins etc., the actual names of the fingers in

the order in which they were exhibited in counting.

8 . The evidence that 3 or 4 was once the limit of Aryan

reckoning has been already adduced. If the fact is so, then the

numerals up to that limit probably bear no reference to the

fingers, but they are so ancient that it is useless now to

inquire into their origin. But the following numerals are

neither so ancient nor so curt in form. Their original names
appear to have been pankan or kankan (5), ksvaks or ksvaksva

(6), saptan (7), aktan (8), navan (9) and dakan or dvakan (10).

Some allusion to finger-counting may well underlie these words.

Ever since A. von Humboldt first pointed out the resemblance

between the Sanskrit pank'an and the Persian pemjeh, ‘the

outspread hand,’ some connexion between the two has always

been admitted. It is possible, indeed, that penjeh is derived

from pank'an and not vice versa, but if we return to the

primeval form, pankan, as Curtius points out^, is probably

connected with irv^, pugnus and fist or kankan with the

Germanic hand. So also dvakan seems to be for dvakankan,

meaning ‘twice five’ or ‘two hands dakan points to

dexter^, he^opai etc. or else to ^dKTv\o<^, digitus, zehe, toe.

Thus whatever original forms we assume for these two numerals,

their roots appear again in some name or other for the hand

or fingers. It is intrinsically probable, therefore, that pankan

means ‘hand’ and that dakan means ‘two hands’ or ‘right

hand.’ It may be suggested, here, that the intervening numerals

are the names of the little, third, middle and fore-fingers of the

right hand. Thus the little finger was called by the Greeks

ooTLTT]^^, by the Latins auricularis. This name is apparently

1 Griech. Etym., Nos. 629 and 384.

2 The Gothic numerals from 70 to

90 are compounded not with the

ordinary -taihun, but with -tehund,

which has been thought (wrongly no

doubt) to mean ‘two hands’ simply.

3 Sinister, sem-el, singuli are curi-

ously analogous to dexter {dec-ister),

decern, etc. The two hands may pos-

sibly have been called the ‘ one-er ’

and the ‘ten-er.’ The ordinary etymo-

logy takes dexter and sinister to mean
the ‘taker’ and ‘leaver’ respectively.

^ The finger-names which follow are

taken from the appendix to Pott’s

Zdhlmetliode. Comp, also his article
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explained by the Germans who call this finger the 'ear-cleaner’

(e. g. Dutch pin, (' poker ’)
oorvinger). Now hsvahs or

hsvaksva seems to be a reduplicated form, containing the same

root as few, ^alvoa, ^vpeco etc., and meaning ‘ scraper.’ The name

saptan seems to mean ‘ follower ’ {eir-ogaLjetc.), and the third

finger might very well be so called because it follows and

moves with the second, in the manner familiar to all musicians^.

The name aktan seems to contain the common root AK and

to mean, therefore, 'projecting,’ a good enough name for the

middle finger. Lastly, the first finger is known as acriraarLKo^,

index, salutatorius, demonstratorius (=‘heckoneY,’ 'pointer’) and

this meaning probably underlies navan, which will thus be

connected with the root of novus, veo^, ‘ new ’ etc. or that of

vevco, nuo, ' nod ’ etc. or both. Whatever be thought of these

suggested etymologies, it must be admitted that there is no

evidence whatever that our forefathers counted the fingers of

the right hand in the order here assumed. They may have

adopted the reverse order, from thumb to little finger, as many

savages do and as in fact the Greeks and Romans did with that

later and more complicated system of finger-counting which we
find in use in the first century of our era and which will be

described hereafter in these pages. If this reverse order be

in Zeitschr. pp. 164—166. It is

curious that this writer should not

have attempted to make any use, by

comparison, of the facts which he had

so industriously collected. Similarly

in his article on ‘ Gender ’ (Geschlecht)

in Ersch and Gruber’s Encyclopaedia,

Yol. Lxii., he gives the facts about

gender in every language under the

sun, but draws no conclusion from

them. It is to be observed, however,

that both essays were written before

the evolution-theory was distinctly

formulated. Some other finger-names

may be here added. The third finger

is generally known either as the ‘ ring-

finger’ (SaKxuXiwrT/s, annularis, golding-

er), or as ‘leech-finger’ {medicinalis,

arzt.): in Sanskrit also, anaman or

‘ nameless :
’ in Greek also eTrigdTTjs or

eTTi^aXos, which maymean ‘ rider ’ [eireg.-

/SoTTys). The first finger is also called

‘licker’ (Xtxaj'6s, Platt D. pott-licker).

Mr J. O. Halliw’ell {Nursery Rhymes

and Tales, p. 206) gives as English

finger-names toucher, longman, leche-

man, littleman, and explains that the

third finger is called lecheman because

people taste with it as doctors try

physic. He cites also such names as

Tom Thumbkin, Bess Bumpkin, etc.

with Norse parallels.

^ So in Odschi or Ashantee the

middle finger is called ensatia hinne,

‘ king of the fingers, ’ and the third is

ensatia sa.fo 'hinne, ‘field-marshal.’ (Pott

in Ersch and Gr. sup. cit.).
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assumed, the numerals may still be explained in accordance

with other finger-names in common use ^ beside those which

have been cited. But after all, the main support of such

etymologies is their great a priori probability. The theory,

on which they are based, brings the history of Aryan counting

into accord with the history of counting everywhere else : it

explains the Aryan numerals in a way which is certainly correct

for nearly all other languages; it explains also the singular-

discrepancy in the forms of those numerals and some peculiar

and very ancient limitations of Aryan counting. It is hardly to

be expected that such a theory should be strictly provable at

all points.

9 . Scanty as is the evidence for the first steps of Aryan

calculation, there is none at all for those which follow. It will

be conceded, however, that so soon as the fingers were used as

regular symbols or a numeral nomenclature was adopted, further

progress could not have been difficult. Doubtless at first, as in

S. Africa at the present day^ the numbers from 10 to 100

required two, and those from 100 to 1000, three calculators.

But the assistance of coadjutors could be dispensed with, in

mere counting, so soon as the memory was trained to remember,

without embarrassment, the multiples of 10 or the habit was

adopted of making a mark or setting aside a symbol at the

completion of each group of 10 ^ Addition scan be performed

with the fingers, but, in the case of high numbers, the process

1 On this plan, ksvaks is the

thumb, saptan the forefinger, navan,

the third finger. Of these navan,

‘nodder,’ is as good a name for the

third finger as saptan, for the same

reason. Saptan may mean ‘sucker,’

(ottos, sapio, saft, sap) pointing to

the finger-names Xtxavos pott-licker,

mentioned in the previous note. For

this, compare the Zulu names for 7,

which are komhile ‘point,’ or kota

‘lick.’ (Pott, Festg. p. 48.)

2 Schrumpf in Zeitschr. der Dentsch.

Morgenl. Gcsellsch. xvi. 463.

Multiples of 10 were expressed by

mere compounds, neuter plurals in

form, up to 100. This last is supposed

to have been named dakan-dakanta^

of which the last two syllables only

survive. But the later word was a

neuter singular, uniiiflected (thus the

e of eKarbv is said to be a relic of 'iv).

Multiples of 100 are again compounds

and plurals, but in Latin and Greek,

curiously enough, they are plural ad-

jectives, with inflexions of gender.

The words for 1000 are different in all

the great branches of Aryan speech

and are all of very obscure origiu.
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involves a severe tax on the memory. This tax is the more

severe with subtraction, because here, to take even the most

favourable conditions, the numerals have to be remembered

backwards. It is probable therefore that both these operations

were very early performed by means of other symbols, such

as pebbles calculi). The multiplication-table is merely

a summarised statement of additions and a division-table would

be merely a summarised statement of subtractions. Continual

practice, leading to well-remembered inductions, was alone

necessary to give considerable facility in the four rules of

arithmetic.

10 . But division, when it came to be conducted with nicety,

introduced a new difficulty. The divisor was not always a

whole factor of the dividend and there was then a remainder.

What was to be done with this? The question, no. doubt, first

arose with concrete units, in a case, for instance, where 23

apples were left to be divided among 24 men. Here obviously

each man will get a fraction of an apple but there are two ways

of ascertaining the fraction. One is to divide each apple into

24 equal parts, and to give to each man 23 such parts. The

other is to subdivide 23 into groups, say 12, 8 and 3, and so to

give each man first |, then |^rd, then ^th of an apple. This

latter method of treating a remainder (by taking parts of it at a

time) is clearly analogous to the way in which the whole

dividend has previously been treated, and no doubt it re-

commended itself, on this account, to the calculators of anti-

quity. But it had also an especial advantage in this, that the

fractions which it produces are more readily represented with

primitive symbols. Given only the fingers or pebbles, it would

puzzle any man to represent directly that fraction of an apple

which we call fjths, but it would not be so difficult to indicate

J + An advantage of the same kind would attend the

practice of dividing the unit always into the same fractions (say

12ths or lOths) and expressing every other fraction, as nearly as

1 It should be mentioned here, also, used at all, so that there would be a

that fractions with low denominators tendency to express the latter in terms

would naturally be familiar long before of the former,

those with high denominators were
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possible, in terms of these. As with the former plan the

numerator, so with the latter the denominator might be taken

for granted and so both the symbols of fractions and calculations

with them would be nearly the same as those for whole numbers.

And as a matter of fact, the ancient treatment of fractions

always did avoid the necessity of handling numerators and

denominators together. On the one hand, the astronomical

reckoning, introduced into Greece from Babylonia, used only

the sexagesimal fractions of the degree, and the Komans used

for all purposes the duodecimal fractions of the as^; thus on

these systems the denominators were implied. On the other

hand, and much more commonly, every fraction was reduced to

a series of ‘submultiples’ or fractions with unity for numerator,

and thus the consideration of numerators was avoided. This

practice was retained in Greek arithmetic to the very last. The

Greeks had long since abandoned the old symbolism of numbers

but they had adopted another, which, though less clumsy to

look at, was even more unmanageable in use. They could

state fractions as easily as • whole numbers, but calculation

of any kind was still so difficult to them that they preferred to

get rid of numerators and to reduce denominators to a series of

numbers, some of which were so low that they could be bandied

mechanically and the rest so high that they could often be dis-

carded without materially affecting the result^

1 Each of the Koman fractions had

a special name. So we might use

shilling for -i^th, ounce for xV^h, inch

for xVth, etc. of any unit whatever.

The Aryans, however, do not seem to

have had a special name for any merely

numerical fraction, except a half. The

Arabs used to distinguish expressible

from inexpressible fractions. The

former are all such as have denomina-

tors less than 9 (or compounded of

any units), and these had special

names: the latter (e.g. xV) tiad no

names. Cantor, Vorl. iiber Gesch. der

Math. I. p. 615.

2 Thus Eutocius, in the 6th century

after Christ, reduces if to ^ + xV» which

is too small. Nesselmann, Alg.

der Griechen, p. 113.



CHAPTER II.

EGYPTIAN ARITHMETIC.

11 . THE preceding pages contain probably all the meagre

facts from which it is still possible to discern how the Greeks

came by their arithmetical nomenclature, both for whole

numbers and for fractions. The subsequent progress of calcu-

lation, that is to say, the further use of the elementary

processes, depends on many conditions which cannot well be

satisfied without a neat and comprehensive visible symbolism.

This boon the Greeks never possessed. Yet even without it a

retentive memory and a clear logical faculty would suffice for the

discovery of many important rules, such for instance as that, in

a proportion, the product of the means is equal to the product

of the extremes. It is probable, therefore, that much of the

Greek arithmetical knowledge dates from a time far anterior to

the works in which we find historical evidence of it. It is

probable, again, that the Greeks derived from Egypt at an early

date as many useful hints on arithmetic as they certainly did on

geometry and other branches of learning. It becomes necessary,

therefore, to introduce in this place some account of Egyptian

arithmetic, both as showing at what date certain arithmetical

rules were known to mankind and as providing a fund of know-

ledge from which the Greeks may have drawn very largely

in prehistoric times. The facts to be now stated are in any case

of great importance, since they furnish the only compact mass of

evidence concerning the difficulties which beset ancient arith-

metic and the way in which they were surmounted.
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12 . Quite recently a hieratic papyrus, included in the

Rhind collection of the British Museum, has been deciphered

and found to be a mathematical handbook, containing problems

in arithmetic and geometryh The latter will be treated on a

later page. The book was written by one Ahmes, (Aahmesu =
moon-born), in the reign of Ra-a-us (Apepa or Apophis of the

Hyksos XVIth or XVIIth dynasty), some time before 1700 B.c.

but it was founded on and follows, not always correctly, an older

work. It is entitled “Directions for obtaining the knowledge of

all dark things,” but it contains, in fact, hardly any general rules

of procedure but chiefly mere statements of results, intended

possibly to be explained by a teacher to his pupils. The

numbers with which it deals are mostly fractional and it

is therefore probable that Ahmes wrote for the elite of the

mathematicians of his time.

He begins with a series of exercises in reducing fractions,

with 2 for numerator, to submultiples. ‘ Divide 2 by 5 ’ or ^ ex-

press 2 divided by 7 ’ etc. is his mode of stating the proposition

and he gives immediately a table of answers, for all fractions

2
of the form up to He does not state, however, why

he confines himself to 2 as a numerator .or how he obtains,

in each case, the series of submultiples which he selects. It is

possible that numerators higher than 2 were subdivided^ but

the second question is the more interesting and has been very

carefully discussed^ It is to be observed that such a fraction as

2%, which Ahmes distributes in the form pf ^
may be

expressed also as 4^5, and in various other ways, aud

1

Eisenlohr, Ein mathematisches

Handbuch dei' alien Egypter, Leipzig,

1877. A short account of the papyrus

was given by Mr Birch in Lepsius’

Zeitschrift for 1868, p. 108. It was
then supposed to have been copied,

not earlier than 1200 b.c., from an

original of about 3400 b.c. The latter

was written in the reign of a king

whose name is not legible in Ahmes’

papyrus, but who is supposed to have

been Eaenmat or Amenemhat III. The

British Museum possesses also an older

leather-roll on a mathematical subject,

but this apparently is too stiff to be

opened,
2 E.g. = + vr= 5 + Th + :jV>

last two fractions being copied from

the table.

3 Cantor, Vorlesungen, i. pp. 24—
28. Eisenlohr, pp. 30—34.
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similarly, with all the other fractions, Ahmes has adopted only

one of many alternatives. Later on in the book^ he gives a

rule for multiplying a fraction by f.
‘‘When you are asked

what is I of
-J-,

multiply it by 2 and by 6 : that is f of it : and

similarly for every other fraction.” Here it is meant that the

denominator must be multiplied by 2 and by 6,'^nd Ahmes’

rule is, in effect, that f of - is ^ -j- ~
,
and this formula he

employs in the table for all fractions of which the denominator

is divisible by 3 (e.g. f = |- jg etc.). But the words ‘similarly

for every other fraction ’ are of twofold application. They may
mean that | of any other fraction is to be found by the same

method, or that |, f etc. of any fraction may be found by

multiplying denominators in a similar manner. The evidence

of the table, however, goes to show that Ahmes was ignorant of

the latter of these rules^ For instance, findiug | expressed as

^ one would expect this formula to be used with all

the other fractions of which the denominator is divisible by 5,

but it is used, in fact, only for -^g-, Again, a few of

the examples in the table are, as we say, “ proved ” by being

treated backwards. Thus if
f-

is J + ^, then J + should be 2,

and this fact (expressed in the form. IJ i + i = 2) is what

Ahmes points out. It has been suggested therefore that the

mode by which the fractions of the table were distributed, was

by taking first of all the submultiple which, when multiplied by
the original denominator, should be as nearly as possible 2

(e.g. ^ X 7 = I), and then adding the remainder. But this

process is clearly not employed with most of the distributions

(e.g. is given, as ^ instead of i jia etc.). This

neglect of the most simple and obvious analogies is observable

1 Eisenlohr, p. 150.

2 The subject is most carefully ex-

amined by Cantor. If p be a prime

number, then is a whole number,
2

1
2 1 1

and - =: - ..

-t-

p ^1 p + l
but of 24

X p

prime denominators occurring in the

G. G. M.

table, only five are treated on this

plan. So again if p and q are odd

numbers, then “^4^ ^ whole number

and
2

p-xq
Only

two denominators, out of the forty-

nine, are treated on this principle.

2
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throughout the table and we must conclude that it was compiled

empirically, probably by different persons and at different times,

certainly without any general theory.

13 . Immediately after the table, Ahmes gives six calcula-

tions, unfortunately mutilated, showing how to divide 1, 3, 6, 7,

8 and 9 loaves respectively among 10 persons ^ and then follow

17 examples of seqem calculation, that is, of raising fractions by

addition or multiplication to whole numbers or to other

fractions^ For this purpose a common denominator is chosen,

but not necessarily one which is divisible into a whole number

by all the other denominators. Thus, in the problem to increase

i H tV A in to 1, the common denominator taken is evidently

45, for the fractions are stated as 11 J, 5|- J, 4J, IJ, 1. The

sum of these is (23|- \ Add to this J and the sum
is Add and the desired 1 is obtained. From other

examples here and elsewhere in the book it is plain that

Ahmes did not use direct division. If it was required to raise

a by multiplication to 5, his plan was to multiply a until he

found a product which either was or was nearly 6. Thus in

the example, numbered by Eisenlohr (32), where IJ ^ is to be

raised by multiplication to 2, he finds on trial that IJ i x 1^ ^
produces ffj. The difference, between this product and 2

is then separately treated®.

14 . After this preliminary practice with fractions, Ahmes
proceeds to the solution of simple equations with one unknown^.

Eleven such are given, expressed, for instance, as follows,

oc

(no. 24) ‘ Heap, its 7th, its whole, it makes 19 ’ (i.e. (jg = 19).

In this particular case, Ahmes goes on, in effect, to state

1 Eisenlohr, pp. 49—53. In these

examples, the denominator is con-

stant, as, in the first table, the numer-

ator.

2 Eisenlohr, pp. 53—60.
3 It should be mentioned that Ahmes

does not multiply directly with a high

number but proceeds by many easy

stages. In order to multiply by 13,

for instance, he multiplies by 2, then

(doubling) by 4, then (doubling) by 8

and adds the necessary products.

Cantor, Varies, i. pp. 31, 32, and 41.

^ The unknown quantity is called

hau or ‘heap.’ In these examples a

pair of legs walking, so to say, with or

against the stream of the writing, are

used as mathematical symbols of addi-

tion and subtraction. Three horizontal

arrows indicate ‘difference’ and a sign

< means ‘equals.’ Cantor, pp. 32, 33.

Eisenlohr, pp. 22—26.
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— = 19 : divides 19 by 8 and multiplies the quotient (2^ by 7

and so finds the desired number 16J but he has also various

other methods of treating the two sides. For instance, in

no. 29, where ultimately |f x = 10, he firs^finds the value of

as IJ and then multiplies this by 10, so as to find

'c = 13i\ These equations are followed by the table of

Egyptian dry measures, and then are added two examples of

Tunnu- or difference-calculation, i.e. of divisions according to

different rates of profit. The examples are ‘ Divide 100 loaves

so that 50 go to 6 and 50 to 4 persons,’ and ‘ divide 100 loaves

among 5 persons, so that the first 3 get 7 times as much as the

other 2. What is the difference (tunnu) ?
’ After this, the

writer passes to geometry, but he recurs at the end of the book

to these algebraical problems and gives about twenty more

examples of the same kind. Most of them are simple, but in at

least three Cantor sees evidence that Ahmes was acquainted

with the theory of arithmetical and geometrical series. The

solution which he gives of the second problem above quoted is

as follows: ‘the difference is 5J : 28, 17^, 12, 6J, 1. . Multiply

by If : 381, 29f, 20, lOf f, If.’ The series first given amounts

only to 60, and each of its terms must be multiplied by If, in

order to produce^ the requisite sum 100. The difference 51-

must have been found from the equation

a + (a - 5) + (<x - 25) . o7,\ . / a^ 1 ^ = (a - 35) + (a - 45),

whence 11 (a — 45) = 25 and 5 = 5J (a — 45). Ahmes then assumes

(a — 45) =1, and so by experiment finds its true value. Another

example (no. 64) is ‘ Ten measures of corn for 10 persons. The

difference between each person’s share and the next’s is -^th of

a measure.’ The solution runs :
‘ I find the mean, 1 measure.

Take 1 from 10 : remainder 9. Halve the difference, i.e.

Take it 9 times, that gives you -i Add it to the mean.

Deduct -|th of a measure for each person so as to reach the end.’

1 Other examples in Cantor, pp. stance of a ‘falscher ansatz,’ a falsa

32—34. positio or ‘tentative assumption,’ on
2 Upon this Cantor [Vorles. p. 36) which see below § 70. n.

remarks that it is the first known in-

2—2
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These consecutive^ sentences mean, in modern algebraical form,

‘ Find -
. Find (n — 1). Find | . Find | x (w — 1). Add - to

'71 li A 7h

I
(n — 1)/ i.e. these directions imply a knowledge of the formula?

for finding the sum or the first term of an arithmetical progres-

sion. The evidence, however, for Ahmes’ knowledge of

geometrical series is confined to the fact that in one example

(no. 79) he states such a series and calls it a ‘ladder’ {Sutek).

15 . One might naturally expect that a nation, which at

so early a date had acquired so much proficiency in arithmetic,

would in another thousand years make much further progress

or would at least discover and begin to remove the obstacles

which prevented such progress. But the Egyptian intellect,

like the Chinese, seems to have been rather shallow, and the

ancients themselves, who were indebted to Egypt for the

rudiments of many sciences, observed with, surprise that no

greater advance was made in that country. In geometry, for

instance, it is certain that the later Egyptians added nothing

whatever to the learning of Ahmes’ day, and though as to

arithmetic there is little or no direct evidence, yet two facts

raise a presumption that Ahmes’ book represents the highest

attainment of Egypt in that science. First, no improvement

was made in Egyptian arithmetical symbolism, and secondly,

the Greeks did not derive directly from Egypt any more

arithmetical learning than is given by Ahmes. This latter fact

renders it unnecessary to pursue further in this place an

inquiry into Egyptian arithmetic, but it is probable, never-

theless, as will be seen hereafter, that Egyptians, educated in

Greek learning, made some important additions to Greek

mathematical methods.

16 . The theories suggested and the facts adduced in the

foregoing pages may be shortly summarised as follows. Primitive

peoples, when they have learnt to generalise, begin to learn to

count. They commence counting with groups of two or three

things only but soon arrive at counting five. When they reach

this limit, they at once begin to use the fingers, or the fingers

and toes, as the means and basis of calculation and are hence-
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forth committed to a quinary or denary or- vigesimal scale.

The gestures used in finger-counting suggest names for five

and the higher units, and with such names and with the use of

the fingers it is possible to attain a fair dexterity in calculation

with whole numbers. It is not so easy, however, to find names

or symbols for fractions, but the difficulty here is very much
reduced if a constant numerator or a constant denominator be

adopted, and one or the other of these devices was, for more

than one reason, employed by all nations which ever got as far

as the arithmetic of fractions. It is evident, nevertheless, that

fractions were at first and remained a stumblingblock to

calculators : for the oldest extant collection of arithmetical

examples is chiefly devoted to them and the latest Greek

writer on arithmetic still uses the ancient devices for expressing

them. Such are the antecedents of Greek arithmetic, so far

as they can be discovered from the evidence of the Greek

language and of the usages of later Greek calculators. It

cannot be doubted, however, that Greece received directly a

good deal of arithmetical learning from Egypt, but this, at

its best, can hardly have dealt with more abstruse subjects than

the- solution of simple equations with one unknown and some

portions of the theory of arithmetical and geometrical series.



PAET II. GEEEK AEITHMETIC.

CHAPTER III.

GREEK CALCULATION. Logistica.

17 . A distinction is drawn, and very naturally and pro-

perly drawn, by the later Greek mathematicians between dpid-

fjLrjTiKT^ and Xo^iGTiKT)^ by the former of which they designated

the ‘ science of numbers,’ by the latter, the ‘art of calculation
h’

An opposition between these terms occurs much earlier and is

frequently used by Plato, but though Xo^iaTiKT^ can hardly

mean anything but ‘calculation,’ it is not quite clear whether

dpidiJbrjTLKi] then bore the sense which it had undoubtedly

acquired by the time of Geminus (say B.C. 50). That it did

so, however, is rendered pretty certain by many circumstances.

It is probable, in the first place, that the Pythagoreans would

have required some variety of terms to distinguish the exercises

of schoolboys from their own researches into the genera and

species of numbers ^ In Aristotle^ a distinction, analogous

to that between the kinds of arithmetic, is drawn between

yeco^atcTLa, the practical art of land-surveying, and the philo-

sophical jecopeTpia. Euclid, who is said to have been a

Platonist and who lived not long after Plato, collected a large

volume of the theory of numbers, which he calls dpiOprjTLKr)

only and in which he uses exactly the same nomenclature and

symbolism as we find in those passages where Plato draws

a philosophical illustration from arithmetic^ It may therefore

be assumed that 'KoyiaTucg and dpiOp'qrLK^ covered, respec-

1 See esp. Geminus cited by Proclus, the needs of merchants,’ with which

Comm. Fuel. (ed. Friedlein), p. 38. comp. Plato, Rep. 525 c.

2 Thus Aristoxenus {apud Stob. Eel. ^ Metaph. ii. 2, 26.

Phys. I. 19. c. 2 ad initium) says that ^ Cf. Euclid vii. with Plato, Theaet.

Pythagoras first raised above 147, 148, or Rep. 546 c.
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tiveiy, the same subjectmatter in Plato’s time, as afterwards

and since he uses these terms casually, with no hint that they

were novel, we may infer that the distinction between them

dates from a very early time in the history of Greek science and

philosophy \

But though the opposition of apiOgurjTLKg and Xo^iaTiKi^ is

as clear as that of theory to practice or science to art, an

historical account of either would necessarily involve frequent

reference to the other. Just as many of the rules of modern

arithmetic are proved by algebra, so with the Greeks the rules

of proportion, the rules for finding a greatest common measure

and the like were discovered by and belonged to dpi6fju7]TLKr]^

while the discovery of prime, amicable, polygonal numbers etc.,

which are part of the subjectmatter of dpidpugTtKrj, is obviously

due to induction from the operations of \oyi(TTi/aj. It is, however,

desirable and even necessary to keep the two apart, for the

record of Greek arithmetical theory is far fuller and more exact

than that of Greek practice and, besides, the symbolism of the

former was entirely distinct from that of the latter. The two

departments, therefore, Xoytcrrifci] and dpidpuijTCKrj, will be kept

separate in the following pages, but it is to be premised that

probably Greek logistic, or calculation, extended to more difiicult

operations than can be here exhibited and that probably Greek

arithmetic, or theory of numbers, owed much more to induction

than is permitted to appear by its first and chief professors.

1 The Platonic passages may be

here mentioned. In Gorg. 451 b c dp-

and \oy. are opposed, but both are

described as dealing with ‘ odd ’

and ‘even,’ the special aim of X07 .

being to find out quantity, both ab-

solute and relative. In Euthyd. 290

B c X07 . is opposed to some philo-

sophical use of numbers, not there

named. But in Rep. 525 c n and
Phileh. 56 D E, a distinction is drawn
between popular dp. and X07 . together

and the philosophical species of both,

the basis of the distinction being that

the former use unequal and dissimilar

units, while the latter use equal units,

contemplated absolutely. The difficulty

of course is to perceive what Plato

meant by popular d/). and philosophical

X07 . It seems to be a satisfactory ex-

planation to suppose that Plato was

here thinking of those rules of X07.

which are proved deductively (popular

dp.) and those doctrines of dp. which

are proved inductively (philosophical

X07.). Thus the proportion 2 apples :

1 ohol :: 6 apples : 3 ohols is a piece

of popular dpidpi.T]TiKy‘, the fact that

‘all the powers of 5 end in 5’ (e.g. 25,

125, 625, etc.), is a piece of philo-

sophical Xoyia-TLKtj.
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18. In a historical account of ordinary Greet calculation,

the first subject which demands attention is the customary

symbolism. This also is the subject which ought to be capable

of most satisfactory treatment, for here the record, if there is

any at all, can hardly he deceptive : and this again is the most

important subject, for a good symbolism is itself suggestive,

while a had one stifles the ingenuity, and a nation’s arithmetical

reputation may be made or marred by the written forms with

which it represents numbers.

At the time when the inquiry into the prehistoric develop-

ment of Greek logistic must perforce be abandoned, we have

found the Greeks in possession of a complete numerical nomen-

clature, with a decimal scale, and accustomed to use the fingers

or pebbles {'yjrrjcpoi) as aids to calculation. These symbols were

no doubt at first used, and continued always to be used, in the

most primitive way, each finger or stone representing a single

unitb But the progress of commerce and the increasing

adroitness of Greek merchants introduced far more complex

conventions into the use of fingers and pebbles, and though it

is probable that these improvements were really subsequent to

the invention of some sort of written symbols, yet the antiquity

of the instruments themselves and the narrow limitations of

their use render it desirable that they should be described first,

before proceeding to the history of written signs.

19. A mediaeval Greek, one Nicolaus Smyrnaeus (called

also Ehabda or Artabasda), in a work entitled rov

SafCTvXiicov fierpoV) written probably in the 13th or 14th

century ^ describes fully the finger-symbolism which was in use

in his time and probably for some fifteen hundred years before.

' On this system, the operator held up his hands, so that the

1 Herod, vi. 63, 65. Arist. Problem.

XV.

2 It is printed in Sclineider’s Eclog.

PJiys. I. p. 477, also by N. Caussinus

in liis Eloquentia Sacra et Humana,

Bk.ix.cb. 8, pp. 565—568 (Paris, 1636),

and elsewhere. See Koediger’s article

in Jahresb. der Deiitsch. Morgenldnd.

GeselUcli. for 1845, pp. Ill—129.

Koediger, who has been followed by

many writers, supposed that Nicolaus

Smyrnaeus was of the 7th or 8th

century, but Dr Giinther {Vermischte

Untersucli. zur GescJi. der Math. 1876)

has lately discovered him to be a con-

temporary of Manuel Moschopulus, a

much later writer.
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fingers were erect, the palms facing outwards. The 3rd, 4th and

5th fingers (to use the German description) might he eKrei-

vofjbevoi or straight, crvdTeWofjievoL
‘ bent ’ or ‘ half-closed,’ k\lv6-

jjbevoL or ‘closed.’ The subsequent gestures may be thus

described :

(a) On the left hand

:

for 1, half-close the 5th finger only

:

„ 2, „ the 4th and 5th fingers only :

„ 3, ,,
the 3rd, 4th and 5th fingers only :

„ 4, „ the 3rd and 4th fingers only :

„ 5, „ the 3rd finger only :

„ 6, „ the 4th finger only :

„ 7, close the 5th finger only :

„ 8, „ the 4th and 5th fingers only

:

„ 9, „ the 3rd, 4th and 5th fingers only.

{b) The same operations on the right hand gave the

thousands, from 1000 to 9000.

(c) On the left hand

:

for 10, apply the tip of the forefinger to the bottom of the

thumb, so that the resulting figure resemblei^(^^

„ 20, the forefinger is straight and is separated by the

thumb from the remaining fingers, which are

slightly bent

:

„ 30, join the tips of the forefinger and thumb :

„ 40, place the thumb behind (on the knuckle of) the

forefinger

:

„ 50, place the thumb in front (on the ball) of the fore-

finger :

„ 60, place the thumb as for 50 and bend the forefinger

over it, so as to touch the ball of the thumb

:

„ 70, rest the forefinger on the tip of the thumb

:

„ 80, lay the thumb on the palm, bend the forefinger

close over the first joint of the thumb and

slightly bend the remaining fingers :

„ 90, close the forefinger only as completely as possible.

{d) The same operations on the right hand gave the

hundreds, from 100 to 900.
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Nicolaus himself does not give signs for numbers above

9000, but Martianus Capella, a writer of the 5th century, says

{De Lib. VII. p. 244? of Grotius edn. 1599) ‘nonnulli

Graeci etiam fjuvpta adjecisse videntur’ by means, apparently, of

‘ quaedam brachiorum contorta saltatio ’ of which he does not

approve. The motions were probably the same as those de-

scribed by Bede in his tract ‘De loquela per gestum digitorumb’

Different positions of the left hand on the left breast and hip

gave the numbers from 10,000 to 90,000 : the same motions

with the right hand gave the hundred thousands and the hands

folded together represented a million.

20 . The finger-symbolism here described was in use, in

practically the same form, in Greece and Italy and throughout

the East certainly from the beginning of our erab but there is

unfortunately no evidence as to where or when it was invented.

By far the oldest passage in which any reference to it may
be supposed to occur is Aristophanes, Vespae, 11. 656—664,

where Bdelycleon tells his father to do an easy sum, ov ^Tq(f)OL^

aXX’ dirb “The income of the state,” says he, “is nearly

2000 talents: the yearly payment to the 6000 dicasts is only

150 talents.” “Why,” answers the old man, “we don’t get a

tenth of the revenue.” It is clear, from this reply, that the

‘easy sum’ in question amounted only to dividing 2000 by 10 or

multiplying 150 by 10, an operation which does not require the

more elaborate finger-signs. Failing this passage, there is

1 Opera, Basileae, col. 171—173.

The material part is given by Roediger.

The finger positions described by Bede

differ slightly, in one or two cases,

from those of Nicolaus Smyrnaeus,

and both again vary slightly from

those used in the East, where the

units and tens were represented {not

alioays, v. the Arabic poem in Bulletino

Boncompagni, 1863, i. pp. 236, 237) on

the right hand and not on the left.

The reader is referred to Eoediger’s

article above mentioned. Plates will

be found in Journal of Philology, Vol.

II. p. 247, in Stoy’s pamphlet Zur

Gesch. des Bechenunterrichts (Jena,

1876), in Neiie Jahrb. fiir Phil. u. Pad.

ISthsupplbd.p. 511, and in many other

places. A large collection of references

is given by Prof. Mayor in his note to

Juvenal, Sat. x. 248. More, esp. to

late Jewish and Arabic writers, in

Steinschneider’s Bihliogr. Hebr. Vol.

XXI. pp. 39, 40.

2 The same or something like it is

still used by Persian merchants. See

De Sacy in Journ. Asiatique, Vol. 2,

and Tylor, Primitive Culture, i. p.

246, n.
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another possible reference, equally doubtful, to this system

of finger-symbolism in Plautus, Miles Qloriosus, IT. 3, but the

first clear references to it occur in Plutarch and authors of his

timeb Pliny, indeed, says that there was, in his time, a statue

of Janus, erected by Numa, of which the fingers indicated 365

or 355 (the reading is doubtful, cf. also Ma^obius, Sat i. 9),

the number of days in the year, but no importance can be

attached to such a statement. All that we can allege of the

system is that it is mentioned only in later classical literature,

that it then appears to be of universal diffusion and that

it was far more persistent in the East than in the West^ If we

consider that such a system can have been of no use in calcu-

lation, save as a memoria technica for some number with which

the mind of the reckoner was not immediately engaged—if, in

other words, we consider that such a system was useful to

represent numbers but not to calculate with them, then it

becomes probable that it was invented in the first instance as a

secret means of communication between merchants^ or as a

numerical gesture-language between persons who were ignorant

of one another’s tongues. Phoenician and Greek commerce

would make it widely known: the later diffusion of Latin and

Greek and the larger use of writing would ensure its gradual

extinction in the West, but it would still preserve its original

utility in the motley and ignorant crowds of the Eastern bazaars.

21 . In reckoning with pebbles, no doubt at first each

pebble represented one of the objects to be counted, the advan-

tage of course being that space was saved and the memory
relieved by a good coup d'oeil, for it will be conceded that it is

easier to count 100 pebbles than 100 cows or to find 10 times

^ Pint. Apophtli. 174 b. Pliny, Hist.

Nat. XXXIV. s. 33. For other reft, see

Prof. Mayor’s note on Juv. x. 249,

above referred to, or Dean Peacock’s

article Arithmetic in Encycl. Metro-

politana.

2 Erasmus, in his ed. of Jerome (iii.

25 B c) published in 1516, confessed

his ignorance of the finger-symbolism

referred to by the saint. He under-

stood it afterwards (see ibid. p. 313).

3 The Persian system mentioned by

De Sacy and Tylor (see note above) is

used only in secret, when for instance

a dragoman wishes to have one price

with the seller and the other with his

master. See also the opening words

of Roediger’s article. Another sugges-

tion as to the origin of this symbolism

will be made below, § 25.
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10 in pebbles than in sacks or such other articles of commerce.

So soon as the heap contained one pebble for each object,

the calculator would begin afresh and by arranging the pebbles

in groups of 10, arrive at the total and the name of the total,

without having his attention embarrassed by petty circum-

stancesh This use of pebbles in mere counting, where each

represents a real object, would naturally precede their use

in calculations where some pebbles would represent imaginary

objects. A great number of pebbles could be dispensed with if

the operator, on completing a group of 10, laid aside a large

pebble or a white one and then began again with the pebbles of

the original group. He would soon find that there would be no

need for a variety of pebbles, if he always laid pebbles repre-

senting 10 in a separate place from those representing units.

In this way, he would arrive at a neat visible symbolism for a

high number, which would greatly facilitate operations in the

four rules of arithmetic. Such an advanced pebble-symbolism

the Egyptians and the Chinese had from a time 'whereof

the memory of man runneth not to the contrary.’ It can

hardly be doubted that they invented it independently and

imparted it to the nations around. Wherever and whenever

invented or borrowed, the Greeks and Italians had it also and

used it by preference for all ordinary calculations down to the

15th century of our era. The evidence for its use, however, is

singularly late. Homer and Pindar do not allude to it, but it is

'plain that it was in regular use by the 5th century B.C., though

the authorities even of that time do not state explicitly how the

calculation with pebbles was conducted ^ It cannot be doubted.

1 In a London night-school I have

often seen a boy, in order to multiply

say 12 by 10, make 120 dots on his

slate and then count these. What he

wanted was the name of the total and

he did not always get this right. With

primitive man, I imagine, the use of

pebbles would not arise till numeral

names had partly superseded finger-

counting. If, for instance, a savage

sold something for 50 cows, he would

indicate his price by naming it, and

would then, with the aid of pebbles,

ascertain whether he had got the price

he bargained for. Thus the Mexicans

acquired a set of numerals, used in

counting animals and things, which

runs centetl, ontetl, etc. or ‘ one-stone,’

‘two-stone,’ etc. Other similarexamples

are cited in Tylor, Early Hist. p. 163.

2 Diogenes Laertius (i. 59) ascribes

to Solon a saying that courtiers were

like the pebbles on a reckoning-board,

for they sometimes stood for more,
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however, that the pebbles were arranged in lines, either hori-

zontal or perpendicular, and that the pebbles on the first line

represented units, those on the second tens, those on the third

hundreds and so on. How many lines there were and how
many pebbles might be placed on each there is no evidence to

show. It may be added that fractions in the form of 'sub-

multiples ’ would not present any difficulty when the system of

local values for the pebbles was once introduced. If for instance

a line were appropriated to pebbles of the value of it would

be as easy to discern that 12 pebbles on that line are equal in

value to 1 on the units line, as to perceive that 10 pebbles on

the unit line may be replaced by 1 on the tens line. But since

a great many lines devoted to fractions would have been incon-

venient, probably a few lines only were devoted to certain

selected fractions, and all other fractions were reduced as nearly

as possible to terms of these.

22 . The surface on which such lines were drawn, or the

frame on which strings or wires were stretched, for the purpose

of pebble-reckoning, was called by the Greeks or d^aKiov.

This name seems to point to the common Semitic word abaq

meaning ' sand,’ and it is said that a board strewn vfith sand,

on which lines might be drawn with a stick, was and still is a

common instrument for calculation in the East. It is the more

desirable also that some Oriental origin for the a/3af should

be found because, in late Greek writers, we find a general

tradition that Pythagoras, who certainly studied out of

Greece, was the inventor or introducer of the instrument. It

cannot, however, be considered that the Semitic origin of

dPa^ is rendered at all probable by such considerations. The

sometimes for less. This, if genuine

(butcf. Polyb. V. 26, 13), is the first and
also one of the most explicit references

to the pebble-symbolism. If this be

doubted, then the earliest authentic

reference is probably a fragment of

Epicharmus (ed. Ahrens, 94, 8) : then
Aeschylus {Again. 570), then perhaps

Herodotus (ii. 36.), who says that, in

pebble-reckoning, the Egyptians count-

ed as they wrote from right to left, the

Greeks from left to right. It may be

that the abacus with the Greeks was
not so old as writing, for the Greeks

did not originally write from left to

right, but either from right to left or

gov(fTpocj)r}b6v. They may have counted

from right to left, but can hardly have
counted povaTpocpgddp.
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word itself in the sense of 'reckoning-table’ is not used for

certain in any writer before Polybius iaQaKiov in V. 26, 13)

who belongs only to the 2nd century B. c. It is, however, used

in the sense of plain 'board’ in many different connexions

b

Assuming it to be true, also, that the Semites did generally use

a sanded board for their calculations it does not appear that this

was called ahaq, and the step from Semitic ohaq 'sand’ to Greek

a ' board ’ remains practically as wide as before. Lastly,

the tradition which connects the with Pythagoras as well

as that which connects him with a Semitic people, is so late and

belongs to so imaginative authors® that no reliance can be

placed upon it. Of course, a few lines drawn with a stick

in the dust and a handful of stones were as efficient an

instrument for calculation as was needed and must always have

been used by Greeks upon occasion. Such an impromptu

ledger would indeed frequently be preferable to a more

elaborate device, since it could be adapted to different fractions,

different monetary scales etc., while a permanent machine

would probably be restricted to one scale and a few selected

fractions. But whether such a scheme of lines drawn on the

ground could ever in Greek have been called a/3af there is

no evidence to show.

23 . It must be admitted, also, that hardly anything is

known of the normal Greek using that word in the sense

of a reckoning-board with permanent lines drawn on it and

possibly permanent balls or pebbles attached to it. Three types

1 The word seems first to occur in

the sense of ‘trencher’ in Cratinus,

KXeo/S. 2 {cit. Poll. x. 105). Hesychius

says it was a synonym for fidKrpa

‘trough.’ Pollux also cites a^aKiov

from Lysias, without stating its mean-

ing. It is oddly accented.

2 The evidence adduced by Cantor,

MatJi. Beitrdge, p. 141, is not satis-

factory on this point, but the fact is

hardly worth disputing. A sanded

board was certainly used by Greek

geometerSy but is nowhere attributed

to arithmeticians. Cf. Cic. Nat. Deor.

2, 18, 48. Tusc. 5, 23, 64, and other

quotations collected by Friedlein,

Zahlz. § 76, pp. 52, 3. See also

Cantor, Vorl. pp. 109—111. It seems

to me not unlikely that a/3a^ was a

childish name for the board on which

the alphabet was written and from

which the children read their

d\(pa j8a, jS^ra d jSe, etc. (Athenaeus,

X. 453). "A/Sa^ would be the ‘ABC

board,’ the termination being chosen

by analogy from vlva^.

3

lamblichus, for instance, and the

pseudo-Boethius, cited post.
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at least of such a machine are well known. One of these is the

E-ussian tschotu, in which each wire carries 10 halls h Some
advance is shown in the Chinese suan-pan^, where the whole

field of the frame is divided by a transverse string : each wire

on that part of it which is below this string carries 5 balls

:

and on the part which is above 2 balls, each of which is worth

5 of those below. On both these machines, apparently, it is

possible and usual to remove balls from one wire to another

as the case may require. But the third type is the Roman
abacus, which, at any rate in its highest development, was

closed, so that balls or buttons could not be removed from the

wire or groove in which they were originally placed. A few

specimens of this sort, constructed with grooves in which

buttons (claviculi) slide, are still preserved. One of them which

is figured in Daremberg’s Dictionnaire des Antiquites {s.v. abacus)

and is in the Kircher Museum at Rome, may be roughly

represented thus

:

Leaving out of consideration, for a moment, the two grooves on

the extreme right, it will be seen that the remaining 7 contain

buttons representing units, tens, etc. up to millions. The lower

^ The balls are differently coloured,

some of the 10 being white and some
black. The instrument was intro-

duced into the schools of Eastern

France after the great Russian cam-

paign. It is common enough in

Pestalozzian schools. See further

Cantor, Math. Beitr. pp. 129, 130.

2 Sudn = reckon : p^hudn = board.

Goschkewitsch, an authority quoted by

Hankel, Zur Gesch. der Math. p. 54,

says that “the practised Chinese

reckoner plays with the fingers of the

right hand on the suan pan as on a

musical instrument and grasps whole

numerical chords.”
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grooves contain 4* buttons each, the higher 1 each, which

represents 5 of the same value as those in the lower corre-

sponding groove. The letters indicating the values of the

buttons are obscure above (7, but are plain enough on another

specimen, which once belonged to one Welser, in whose works

published at Nuremberg in 1682 there was given a drawing of

his abacus (pp. 442 and 819) h The sign 0 which distinguishes

the penultimate groove on the right, stands for uncia, and as

there are 12 unciae to the as, here the lower portion of the

groove has 5 buttons for 5 unciae, the upper 1 button for

6 unciae. The signs appended to the last groove on the right

are 8 for semuncia ^ foi’ sicilicus (^^^th of an as)

:

and .^for sextula
( 7

*

2
^^ however, very clear

why there should be 4 buttons in this groove or what was

the value of each and how, if of different values, they were

distinguished from each other. Welser s abacus, which in other

respects is exactly similar to this, had three separate grooves

for these fractions, the first containing ' 1 button for the

semuncia y^th) : the second 1 button for the sicilicus (^jg^h)

:

the third 2 buttons, each representing a sextula (y^nd). These

grooves therefore together (and no doubt the last groove of the

Kircher abacus) represent ylths of an uncia'^. Both abaci are

capable of representing all whole numbers from 1 to 9,999,999

and the duodecimal fractions of the as in common use. Since

such an abacus could seldom represent more than one number

at a time, it is probable that, in calculating with it, the larger

of the two numbers to be dealt with would be represented on

the table. The smaller would be mentally added or subtracted

1 Reproduced byFriedlein in Zeitschr.

fur Math. u. Physik. Vol. ix. 1864.

Plate 5. See also p. 299. A descrip-

tion of this abacus is given also in

Friedlein’s Zahlzeichen, p. 22, § 32.

A figure of it is given in Darem-

berg, Diet, des Ant. s.v. arithmetica.

M. Ruelle, the writer of the article,

says that 4 Roman abaci {which he

names) are known, but it does not

appear that they are all now in exis-

tence.

2 This statement, which is taken

from Friedlein, seems unlikely. On
the analogyof all the preceding grooves,

we should expect the table to conclude

with ^^ths of the uncia, and not ^fths.

It will do so if the last two buttons be

taken to represent, not sextulae, but

diiuidiae sextxilae, the ordinary sign of

which is easily to be confused with

that of the sextula. See Friedlein,

Zahlz. Plate to § 48.
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as the case may be, and the buttons would be successively

altered so as to represent the sum or remainder. Multiplica-

tion can only have been performed by repeated additions, and

division by repeated subtractions h

24. It will be seen that the types of abacus now known

are not very diverse from one another, and there is no cause to

be greatly distressed by our ignorance of what the Greek a/3af

was. A certain table, however, which may be an d^a^, was

discovered in 1846 in the island of Salamis and this, which can

be partly explained by reference to the Roman instruments,

must serve to assure us that there cannot have been any great

superiority in the Greek at any time. This “ Salaminian

table” may be figured thus^:

XF'HFAPhICTX

> V

H
a
X3

>

o
H
X

X3
X
"E
>
-3

o
H
X

^ Unless indeed the abacus is used

merely as a memoria technica. Thus
the Chinese, in dividing, first represent

the dividend, then, breaking it up as

the remainders successively are ob-

tained, place, on the wires from time to

time vacated, balls to represent the suc-

cessive ciphers of the quotient. The
actual division is done in the mind by

G. G. M.

use of the multiplication-table. Thus
Goschkewitsch (cited by Hankel uti

sup.) says many modes of division

have been proposed for the Russian

tschotu, but they all involve the use of

a second board or of a board and
paper.

2 There is a drawing of it in Da-
remberg s.v. Abacus: also in Revue

3
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It is made of marble and is very large, being about 5 ft.

(1'5 metres) long by 2^ ft. ('75 metre) wide. The letters upon

the margin are easily explained. [- is the customary Attic sign

for a drachma. The letters which, in the table, stand on the left

of this sign are 11 for 5 [Trevre), A for 10 {SeKa), P for 50, H for

100 (e/raTw), p for 500 and X for 1000 in the ordinary

Attic style. To these are added, in one row, the signs P for

5000 and T for raXavrov or 6000 drachmae. The signs which

stand to the right of h in the table are the fractions of the

drachma, viz.
|
for Jth (obol), C for j^gth (J obol), for ^\th

{TeTaprrj/jLoplov of the obol) and X for '^aXKov<; (-Jth of the

obol, Jgth of the drachma). The last three fractions, it will be

observed, when added together make |ths of an obol, which is

the real unit of the table. On the principle of a Roman abacus,

this scale would be thus distributed

:

But it will be seen that the lines of the Salaminian table do
not fall in with this arrangement. Here we have 11 lines, with 10

intervals, in one place : and 5 lines, with 4 intervals, in another.

If the table be really an the simplest explanation is that

Arclieolog. 1846, p. 296, where a very

minute description of the stone is

given by M. Rangabe. Another Greek

ahax is also figured on the Darius-vase

at Naples. The numerals on it are

of the same kind as those on the

Salaminian table and it is held by the

reckoner so that the columns are

perpendicular to his body. But it is

too small and roughly drawn to furnish

important information.

1 TeTapTTjixopLov is Bdckh’s expla-

nation: M. Vincent proposed rpirr]-

fioplov.
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the 10 spaces at one part of the board contained stones repre-

senting values from a talent to an obol, in the order TFXnHP
A Phi: and the 5 spaces at the other part of the board contained

stones representing values from an obol to a chalcus, in the

order
|, C, T, X. The transverse line would serve ta distinguish

two sums which were to be added together or subtracted one

from the other : or again, as in the Roman system, the numbers

compounded with p might have been placed above this line.

The crosses on the line are merely aids to the eye in keeping

the various rows distinct. Operations with fractions of the obol

would be separately conducted at the lower end of the table.

The table also being very large, perhaps two people would work

at it at once, or because it was heavy, it might be desirable to

use it from either side and therefore a table of customary values

would be repeated in various parts of the table. The received

explanation, however, of the use of the table is different from

this. The well-known archaeologist, M. Vincent ^ considered

that the table served two purposes: that it was an a/3af, and

also a scoring board for a game something like tric-trac or back-

gammon. When it was used as an fractions of the

drachma were calculated at the end of the table on the 4 spaces

there reserved : sums from the drachma to the talent were

calculated on five of the other ten spaces, and the remaining

five were used for calculations from one talent to 10,000 talents.

It is an objection to this theory that a Greek merchant or tax-

gatherer can seldom have had occasion to calculate above a few

talents, since the whole revenue of Athens in her prime was not

2000 talents^ But the suggestion which M. Vincent adopts

from M. Rangabd^ that the Salaminian table was also a scoring-

board for some kind of TrerreLa is extremely attractive. Pollux,

who vaguely describes two kinds of this game (ix. 97), says that

each player had 5 lines and 5 counters, and that the middle

line was ‘sacred’ {lepa ypafifii]). M. Rangabe therefore sug-

1 Revue Arclieol. 1846, p. 401 sqq. he must have spent 10 talents in

2 See, however, Theophrastus, Char. charity.

VI. (ed. Jebb), where the boastful man ^ Ihid. p. 295 sqq.

reckons, on just such an abacus, that

3—2
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gested that the lines marked with a cross on the table are really

the i€pal jpafi/juai, and that two players, sitting opposite to one

another, would play at some kind of backgammon, each player

confining his counters to his own side of the transverse line.

The counters were moved according to throws with dice, as in

backgammon. Anyone, who is acquainted with the latter

game, will be able to suggest two or three very good forms of it

Avhich might be played on this table and in which the lines

marked with a cross should be truly iepai, either because no

‘blot’ might be left there or because they should be an asylum

where no solitary wanderer could be ‘ taken up.’ The 5 lines

at the opposite end of the table would serve for some less

elaborate irerTeia or for a- third player or might, in some way,

have been used to determine the values of the throws.

25 . It will be seen, from the preceding observations, that our

knowledge of the abacus of antiquity is derived entirely from

Roman sources, and that the mode in which it was used must

be inferred simply from the appearance of extant instruments

and the practice of modern nations. It would seem, however,

that the use of the abacus was combined with the more

advanced finger-symbolism above described. Thus the Emperor

Frederick the Second (Imp. A.D. 1210—1250) in a treatise on

the art of hawking^, says that the hands must, on various

occasions, be held in certain positions, such as abacistae use for

representing certain numbers in accordance with Bede’s or

Nicolaus’ instructions. Now since only one number could, as a

rule, be represented at a time on the abacus, a calculator who
was operating with two high numbers, would require a memoria

technica of both, and it would be very convenient to represent

one on the abacus, the other on the hands. It is indeed

1 Reliqua Lihr. Frederici II. (ed. that after mastering the apices [i.e.

Schneider i. p. 102) quoted by Roe- the numerical signs used with the

diger : “Replicet indicem ad extremi- abacus) the pupil must learn ‘com-

tatem pollicis et erit modus secundum putum per figuram manuum secun-

quem abacistae tenent septuaginta cum dum magistrorum abbaci usum anti-

manu,” with more directions of the quitus sapientissime inventam.’ He
same kind. Thus also Leonardo of ^then gives the scheme after Bede.

Pisa (about a.d. 1200) in his Liber Vide Friedlein, p. 56.

Abbaci (ed. Boncompagni p. 5) says
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possible, considering the lateness of all allusions to this finger-

symbolism, that it was originally invented as a companion to the

abacus.

26 . A few words only remain to be added on this branch

of Greek practical arithmetic. Western ahacistae had intro-

duced, certainly by the 10th century, a considerable improve-

ment in the use of their instrument, which consisted in discarding

pebbles and substituting for them the Roman numeral signs or

the letters of the alphabet in order, so that thenceforth 525, for

instance, was represented by V. II. V. or EBE in the last three

columns of the abacus^. At the end of the first book of the

Geometria, attributed to Boethius (who died A.D. 524) the

author states (Friedlein’s ed. pp. 395—397) that Pythagoreans

used with the abacus certain nine signs which he calls apices of

which he gives the forms. (The names are added apparently

by a later hand.) The forms are obviously the parents of our

own so-called Arabic numerals (except 0, which is not mentioned

in Boethius) ^ and some of the names are also pure or nearly

pure Arabic : the forms are also practically identical with the

Gobar-numerals used by the Arabs of N. Africa in the 9th

century, which again are admittedly of Indian origin. Upon
these facts an endless controversy has arisen among historians,

the questions in dispute being whether Pythagoras or any

Pythagoreans might not have procured these signs from India

and used them secretly for their quasi-theosophical arithmetic®

:

whether the later Alexandrians might not have obtained the

1

Gerbert (ob. 1003) sometimes uses

the Roman numerals, but generally

the apices. Boethius or rather a pseudo-

Boethius (Friedlein’s ed. pp. 426—429)

of a much later date mentions the use

of the alphabet (cf. Friedlein Zahlz.

pp. 54, 55, §§ 78—80). It will be ob-

served that with an abacus on which

numbers were represented by signs in

appropriate columns, the four rules

of arithmetic could be performed pre-

cisely as we perform them. Addition,

subtraction and multiplication were

so in fact. Division, however, was not.

See Hankel, Zur Gesch. der Math. pp.

317—323.
2 It is doubtful whether the cipher

was at first used by the Western Arabs

among the Gobar-signs. It was intro-

duced to Europeans first apparently in

the book Lifter Algorismi, a translation

of the work of Mohammed ben Musa
AlkhS,rismi, made in the 12th century.

Gobar or gubdr means ‘dust.’

3 This was Cantor’s opinion. Math.

Beitrdge, p. 221 sqq., but in Vorle-

sungen, p. 610 and elsewhere he follows

Woepcke (see next note).
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signs from India or elsewhere and given them to the Italians on

the one hand, the Arabs on the other ^ : and lastly whether the

passage in Boethius is not a forgery^. It is sufficient here to

repeat, what is admitted by all parties that there is no evidence

in any Greek author that these apices were known to the Greeks :

that there is also no evidence whatever that the Greeks ever

used any written numerical signs with the abacus : that the

MSS. of Boethius containing the apices are certainly not older

than the 11th century : that no trace of such signs is to be

found elsewhere in any European writer before the end of the

10th century or thereabouts : that the Indian signs, from which

the apices are derived, seem to be not older than the 2nd or 3rd

century: that the Arabs themselves did not obtain the Indian

arithmetic and Indian numerals till the time of Alkharizmi

(cir. A. D. 800) and that Arabian mathematics did not begin to

pass from Spain to other European countries till about the

time of Gerbert (ob. A.D. 1003). The mere statement of these

facts is surely sufficient to assure any reader that the connexion

of the Greeks with the apices, if not absurd, is purely con-

jectural and need not be discussed at length in a short history

of Greek mathematics I If it were admitted that the Greeks

knew of the apices at all, there would still be no reason what-

ever to think that they ever used them in calculation.

27. The apices, it must be remembered, were used only

with the abacus. No writer, even of the middle ages, ever in

the course of his text exhibits a number in these symbols. If

he purposes to illustrate the method of division, he states his

example with Homan numerals, then draws an abacus and

1 Woepcke {Journal Asiatique, 1863,

I. p. 54 sqq.) suggests that the later

Alexandrians got these signs from

India : Theod. Henri Martin (Annali

di matem. Rome 1863, p. 350 sqq.)

suggests that they got them partly

from Egyptian, partly from Semitic

sources.

2 This is Eriedlein’s opinion, main-

tained in many articles. The most

convenient reference is to Zalilz. pp.

15—19, 23—26, 51—54, 66, 67. Still

later and on the same side is Weissen-

born, in Zeitschr. Math. Pliys. xxiv.

(1879), Hist. Lit. Abth. Supplement-

heft, published also in Teubner’s Ab-

handlungen zur Gesch. der Math. Part

II. 1879. This latter writer rejects the

whole Geometria, not merely the arith-

metical passages at the end of Bk. i.

and Bk. ii.

3

Another brief discussion of the

apices question is given by Hankel,

pp. 323—328.
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inserts in it the necessary numbers with apices. Hence, closely

as apices upon an abacus resemble, and serve all the purposes of

our modern numerals, there is still a great gulf between the

two. The cipher is yet to be invented before the abacus can be

discarded. It follows again, from the same fact, that whatever

be thought of the Greek acquaintance with apices, ihQXQ can be

no doubt at all that these were never entitled to be described

as ordinary Greek characters for the numerals. They were not,

and could not have been, used in inscriptions or other writings.

It remains to consider, in this place, what characters were used

in such documents.

28. It has been suggested above that probably, when the

use of the fingers in counting was first discovered, it required,

as in S. Africa at the present day, two men to count the higher

tens, three to count the higher hundreds and so on. A single

man, in counting say 40 or 60, would be apt to forget how
many times he had counted his fingers through and would take

an assistant to record them. But he would soon find that he

could count high numbers by himself, if he kept some visible

record, to which he could afterwards return, of each group of 10.

Suppose, for instance, that each time he had counted through

both hands, he pressed them on the ground, so as to leave an

imprint of his fingers. He would thus have a written record, in

groups of 10 perpendicular strokesh Any other marks would,

of course, serve his purpose, but it is a curious fact that in all

^ In order clearly to represent the

arithmetical resources of primitive

man, I may as well state here what

I conceive to be a very early method
of counting. Suppose a man, who
has names for his fingers and knows
that all human beings have the same
number of fingers, desires to count

by himself 96 cows or other large

unmanageable objects. I suppose he

would first take a pebble for each cow
and seat himself before the heap of

pebbles. He would then take a pebble

for each finger up to 10, then press

his fingers on the ground : and would

repeat this process till he had exhaust-

ed the pebbles. The imprints of his

fingers would then shownineteen hands

and one finger over, or 9 men + 1 hand

+ 1 finger. This he would call ‘ring

finger-men and rigJit-thumh’ or by

some such name. The pebbles, the

fingers and the written marks are used

concurrently, but in time as his nomen-
clature became settled and his memory
improved, he would omit first one,

then two of the three symbols, and

would finally dispense with them all

and trust to his nomenclature alone.
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the most ancient specimens of any sort of writing, the units at

least are represented, not by dots or crosses or any other marks,

but by perpendicular strokes only. This want of variety

suggests that such strokes represent the fingers. The invention

of separate symbols for 10 and 100 would follow at a far later

time. The oldest known writings of the Egyptians and

. Phoenicians have such signs, but have no intermediate signs

(e.g. for 50 or 500). They repeat the unit-strokes up to 9 : they

repeat the signs for 10 and 100 up to 9 times\ The ancient

Greeks, according to lamblichus^ did the same. It is probable

enough that such was the case, since an arithmetical written

symbolism may well suggest itself long before any other kind of

writing
;
but on the other hand, as some kind of writing is

necessary to explain to us the purport of arithmetical symbols,

and as the oldest Greek writings are of very late date and of the

most advanced art, we can hardly expect to find evidence in

support of lamblichus’ statement.

29 . It goes without saying that, in a very large proportion

of Greek inscriptions, the names of such numbers as occur are

written in full. The oldest known compendious numerical

symbols are those which used to be called Herodianic signs.

The attention of modern students was first called to them by

one Herodianus, a Byzantine grammarian of the 3rd century,

who, in a passage printed by Stephanus in the Appendix

Glossariorum to his Thesaurus, declared that he had frequently

seen these signs in Solonic laws and other ancient documents,

coins and inscriptions. While Greek epigraphy was an unknown

science, this statement excited little interest, but it has since

been abundantly confirmed by the enormous mass of inscriptions

which the industry of scholars has, of late years, collected. In

this sort of numerals, a stroke I repeated not more than four

times, is the unit-sign par excellence and the other symbols are

1 See Pihan, Expose des Signes de (See Franz, Epigr. Graeca, p. 347.

Numeration, etc. pp. 25—41, 162— Bockh, C. I. G. no. 2919, Vol. ii. p.

168. 684.) Such forgeries were, of course,

2 In Nicom. Arithm. ed. Tennulius, not unusual when a city wished to

p. 80. An inscription from Tralles has produce a documentary title to some

ereos
1 1 1 1 1 1 1

but Bockh suspects this to ancient privilege.

be a forgery of late imperial times.
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merely initial letters of numeral names. P {Trevre) stands for

5: A (heica) for 10: H (eKarov) for 100: X for 1000-

M {fjLvpLoc) for 10,000, and there are further compendia P, P etc.

for 50, 500 etc. as may be seen on the Salaminian table figured

above. From the frequency with which these signs occur in

Athenian inscriptions, they are now generally called Attic. As

a matter of fact, no others are used in any known Attic in-

scription of any date B.c.^ But they are by no means exclu-

sively Attic. They were used for instance in Boeotia, at first in

the forms of the local alphabet (thus M, FI, F, ITE, HE, R, t>, I)

and afterwards, down to a late date, in the Attic forms^ It is

probable, in fact, that these numerals were once universally

used in Greece but at present there is not enough evidence on

this point. They were at any rate known and used outside

Attica long after the alphabet came to be used for numerical

purposes. A great number of papyrus-rolls preserved at Hercu-

laneum, state on the title-page, after the name of the author,

the number of hooks in his work, given in alphabetic numerals,

and the number of lines in Attic numerals: e.g. ''Ei'rrtKovpov irepl

(ftvareco^ IE {apiO.) XXXHH. We might in the same way use

Koman numerals for the one division, Arabic for the other.

One author, who is presented with such a title page in these

rolls, is a certain rhetorician called Philodemus, of Cicero’s time.

The papyri therefore cannot be older than 40 or 50 B.c. and

may be much later

^

1 In other words, no others occur in

Vols. I. and ii. of the Corpus Inscr.

A tticarum.

2 See Franz, Epigr. Graeca, App. ii.

ch. 1, p. 348, Bdckh, C. I. G. Vol. i.

no. 1569 (p. 740 sqq.) and no. 1570

(p. 750 sqq.) The latter inscription

Bockh dates about 70 or 100 b. c. A
large majority of Greek Inss. (inclu-

ding all the oldest) do not contain

numerals at all. Inss. from places

outside Attica are very seldom older

than the 2nd century b.c. and are

mostly of imperial times. The monu-

mental evidence, therefore, as to the

early numeral signs, is very scanty.

The Herodianic signs are found, beside

Boeotia, in Arcadia with local pecu-

liarities (Le Bas and Foucart, Inss. de

Peloponn. no. 341e) : in Erythrae near

Halicarnassus about 250 b.c. (Rayet

in Revue Archeol. 1877, Vol. 33, p. 107

sqq.) : and in Rhodes about b. c. 180

(Brit. Mus. Inss.), cf. Curtius in Bur-

sian’s Jahresb. for 1878.

® See Ritschl, Die Alexandrinischen

Bibliothehen, pp. 99, 100, 123 note.
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30 . But at some time wliich cannot now be certainly

determined, the Greeks adopted the practice of using the letters

of the alphabet in order as their numeral symbols, and this

style ultimately superseded the Attic in Attica itself and be-

came universal among Greek speaking peoples. The alphabet,

however, as used for numbers, was not the same as that used

for literary purposes, but contained some additions. The
following table will show clearly enough what the numerical

alphabet was:
a', y, 8', 6' = 1, 2, 3, 4, 5.

^-s- = 6.

r, V, e\ .' = 7, 8, 9, 10 .

[la, l/3' 12 19.)

/c', X', y, p',
f', o', 7r' = 20, 30, 40, 50, 60, 70, 80.

(/ca, k/S', \a, Xy8' etc. = 21, 22, 31, 32 etc.)

* Q = 90.

p, u', </)', y, « =100, 200, 300 800.

*^= 900 .

(pta\ pK^' etc. = 111, 122 etc.)

A A etc. = 1000, 2000, 3000 etc.

^ V

Mu or M, M, M etc. = 10,000, 20,000, 30,000 etc.

It will be seen that an alphabet of 27 letters ^ (including 3

strange letters, the so-called iiricrripLa S", P, and '^) represents

all the numbers from 1 to 999 and that numbers under this

limit are marked with an acute accent, placed immediately

behind the last letter. At 1000, the alphabet recommences,

but a stroke is now placed before the letter and usually, but

not always, somewhat below it. For 10,000 Mu, or M, the

initial of pypioi was generally used, and the coefficient of the

myriad, to use an algebraical expression, was usually written

over (but sometimes before or behind)^ this M. Sometimes

1 The 24 letters, exclusive of the eirL-

0-7][xa, are those of the Ionic alphabet,

introduced formally at Athens in 403

B. c. It was in use in Asia as early as

470 B.c.

2 If the coefficient was written first,

M was often omitted and a dot sub-

stituted (e.g. = 29,342). In

MSS. again the myriads are sometimes

represented by a, p, 7 etc. hundreds of

thousands {/xvpLaKis fxvpLot) by d, 7
etc. Vide, for authorities, Hultsch,

Metrologicorum Scriptorum Belliquiae,

Vol. I. pp. 172, 173. Eitschl, Die

Alex. Bihl. p. 120. Nicomachus (ed.

Hoche) Introd. p. x. Friedlein Zahlz.
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also {e.g. in MSS. of Geminus) k, etc. are used for 10,000

20,000, 80,000 etc. in the ordinary sequence of the alphabet.

/3

Thus the number 29,342, would be written or

But in a high number, since the digits were always arranged in

the same order, from the highest multiple of 10 on the left to

the units on the right, the strokes or accents which distinguish

thousands and units were often omitted and a stroke drawn

over the whole number. The left-hand letter would then have

a local value (e.g. ^TyL6^ = 9849)b The symbolism for fractions

will be mentioned later.

31 . It has been commonly assumed, since the use of the

alphabet for numerals was undoubtedly a Semitic practice and

since the Greek alphabet was undoubtedly derived from Semitic

sources, that therefore the Greeks derived from the Semites the

numerical use of the alphabet with the alphabet itself I And
this theory derives further colour from the fact that the Greek

numerical alphabet contains three Semitic letters which were,

within historical times, discarded from the literary alphabet.

Yet this evidence is in all probability wholly illusory. The

Greek alphabet was derived from the Phoenicians but the

Phoenicians never used the alphabet for numerical purposes at

alP. The Jews and Arabs did, but the earliest documentary

evidence for the practice, even among them, is not older than

141—137 E. c. when dates, given in alphabetic numerals, appear

on shekels of Simon Maccabaeus^ The Greek evidence goes a

good deal further back than this.

pp. 9—11, §§ 12—17. Nesselmann,

Algebra der Griechen, pp. 74—79.

^ Cf. for instance C. I. A. Vol. iii.

nos. 60 and 77.

2 See for instance Nesselmann, Alg.

der Griechen, pp. 74—79. Cantor,

Math. Beitrdge, pp. 115—118. Varies.

pp. 101—107. Eriedlein, Zahlz. p. 9,

§ 12, etc.

2 The ordinary forms of Phoenician

numerals are upright strokes for units:

a horizontal stroke for 10: // for 20,

and kl for 100.

* See Schroder Phonikische Sprache.

Madden, Coins of the Jeios, p. 67.

Also Dr Euting’s letter quoted by

Hankel, Zur Gesch. der Math. p. 34.

It was Hankel who first proclaimed

the relevancy of these facts to the

history of the Greek numerals. But
Ewald and Nordheimer had, long be-

fore, stated that the Hebrew numerals

were used “after the Greek fashion”

and that they do not appear till a late

time. Hankel abides by the common
opinion that the Greek numerical

alphabet dates from the 5th century

B.C.
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Against these facts it may be urged (1) that the Jewish

practice of Gematria, adopted by the later Kabbalists, is said

by them to be very early, and is perhaps as old as the 7th

century B. c. This was a curious system of Biblical interpre-

tation, whereby two words were treated as interchangeable, if

their letters, considered as numerals amount, when added

together, to the same sum \ And again (2) both the Hebrew

and the Greek literary alphabets are too short for a good

arithmetical symbolism and both are supplemented up to the

same limit (the 27th letter in each standing for 900). But as

to (1), it must be observed that the supposed antiquity of

gematria depends solely on a merely conjectural and improbable

comment on Zechariah xii. 10^. There is in fact no clear

instance of gematria before Philo or Christian writers strongly

under Philonic influence (e. g. Kev. xiii. 18 ;
Ep. Barn. c. 9)^

The practice belongs to Hellenistic Jews; its name is Greek

and it is closely connected with Alexandria, where, we shall see,

alphabetic numerals are first found. And as to (2), it seems

more likely that the Jews took the idea of alphabetic numerals

from the Greeks than vice versa. The Greeks could, by hook

or by crook, furnish the necessary 27 alphabetic symbols. The

Jews could not. Their alphabet is only 22 letters, and the

numbers, 500 to 900, must be represented by the digraphs

pn, ‘in etc. compounded of 100-400, 200-400, etc.^ There is in

' See Cantor, Varies, i. pp. 87,

104—5, quoting Lenormant, La Magie

cliez les Chaldeens p. 24. Also Dr

Ginsburg’s monograph, Kabbalah p.

49 and the same writer’s article Kab-

balah in Ency. Brit. 9tli ed. Vol. xiii.

The Gematria is employed in Eev. xiii.

18, where 666, the number of the beast,

is the sum of the Hebrew letters in

Nerun Kesar. So in Gen. xviii. 2

‘Lo 1 three men’ is by gematria found

equivalent to ‘ These are Michael,

Gabriel and Raphael.’ Gematria is

by metathesis from ypag/xareia.

2 Hitzig, Die xii. kleinen Propheteyi,

p. 378 sqq. cited by Cantor Vorl. p. 87.

3 Cf. Siegfried’s Philo, p. 330.

^ The later Hebrew alphabet has

fivefinal forms ^ D, j, p (cf. Greek

<r and s), which are sometimes used to

represent the numbers 500—900. But

this cannot be an ancient practice.

The square Hebrew characters, which

alone have finals, did not come into

use till the 1st or 2nd century b. c.,

and these five finals were not definitely

fixed for many centuries afterwards.

Vide the Table of alphabets in Madden
‘Coins of the Jews’ or Dr Euting!s,

appended to Bickell’s Outlines ofHebrew

Gram. 1877.
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fact no evidence against, and a good deal for, the supposition

that the Jews derived alphabetic numerals from the Greeks.

The contrary belief is perhaps only a relic of the old superstition

.

which counted it profane to question the priority of the Hebrews

in all arts.

32. But the date at which the Greeks adopted the alpha-

betic numerals is not easily to be determined. The alphabet

was indeed, at an early date, used quasi numerically but not in

the manner now under discussion. The tickets of the ten panels

of Athenian jurymen Qieliastae) were marked with the letters of

the alphabet from a to k, S’ being omitted h So also the books

of Homer, as divided by Zenodotus (flor. c. B. c. 280) were

numbered by the 24 letters of the ordinary Ionic alphabet,

S" and P being omitted : and the works of Aristotle were also

at some ancient time divided into books, numbered on the same

principled It seems unlikely that the regular numerical alpha-

bet (with r, P, was in common use at the time when these

divisions were made. Secondly, in the numerical alphabet r is

undoubtedly the digamma and this and P occur at their proper

(^.6. original) places in the alphabet. But the evidence at

present forthcoming shows that there never was, in any Greek

country, a literary alphabet which contained both s’ and P along

with both i/r and «. One or other of the first had dropped out

before one or other of the second had been introduced^. The

last numeral whether it represents the Phoenician sTiin^ or

tsad4, occurs in either case out of its place and is clearly

resumed into the alphabet for numerical purposes only. These

facts surely raise a presumption that the numerical alphabet

was settled not casually and by local custom, but deliberately

1 Scbol. to Aristophanes Pint. 277.

Hicks, Greek Hist. Inss. no. 119, p.

202. Franz, Epigr. Gr. p. 349.

2 This appears from Alexander Aph-

rodisiensis, who i^ugHetaph. 9, 81, b.

25) quotes from t<2v Ntico/^. a series

of definitions which belong to the

sixth book. The Aristotelian books so

numbered are the Ethics, Politics and
Topics.

^ See the charts appended to Kirch-

hofi Zur Gesch. des Griech. Alphabets

3rd ed. and pp. 157—160 of the text.

Such transcripts as that in Hicks Gr.

Inss. no. 63, p. 117 sqq. are mis-

leading. The original of this (sec

Rhein. Museum, 1871 p. 39 sqq.J^ .

*

tains neither -n nor w.
4 mi ^ 1 . TT -inMace-
^ The Greek cav. Her^^ ,

„ ^ 2nd cent.

1970,1971.
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and by some man of learningb Further, since no antiquarian

could of his own motion persuade a people to revive, and to

revive in their right places, letters which they had long since

discarded, it is probable that this particular antiquarian was

supported by some paramount political authority. It is plain

also that this authority did not reside at Athens or near

thereto, for the Athenians and Boeotians continued to use the

Herodianic signs for two or three centuries at least after the

alphabetic numerals appear elsewhere. It may be conceded,

indeed, that public inscriptions would be the last place in which

the new numerals would appear, but it is incredible that the old

signs should have been retained by mere custom so long if the

new had meanwhile been in common use. Lastly, it must be

mentioned that the alphabetic numerals were a fatal mistake and

hopelessly confined such nascent arithmetical faculty as the

Greeks may have possessed. The Herodianic signs were clumsy

but they did not conceal those analogies which ought to be

obvious to the tiro in arithmetic. An Athenian boy who had

been taught that III multiplied by 111 amounted to PI I II would

very soon have learnt that AAA multiplied by AAA would

amount to PHHHH and he might have guessed that, if PI

added to P amounts to Al, then PA added to P would amount

to HA. And these are really the severest difficulties which can

occur with’ Herodianic signs. But, with alphabetic signs,

y xy— 6' is no clue to x V = or S’ + e = ta' to + v = pi.

Such signs as these are no assistance to calculation and involve

in themselves, a most annoying tax on the memory. Their

advantage lies in their brevity alone, and it is to be suspected

on any inscription earlier than the

13th or 14th century. Similar acci-

dents may have affected the record in

many other particulars, hut we must
of course use the record as we find it.

As it stands, it points to Alexandria

as the place where the numerical alpha-

bet was invented and there never was
any reason to doubt this.

1 It should be mentioned here that

we know of no fluctuation in the value

of the Greek letters. P for instance

might occasionally have its Semitic

value 100, instead of 90, or S might

occasionally (p or S" being omitted)

Qa'j^sent 100, instead of P. But

by met^o known case in which any

2 Hitz'i^, arises. It is, no doubt,

p. 378 sqq. cT.t that does not occur,
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tliat they were invented first for some purpose to which brevity

was essential or desirable.

33. It curiously confirms all the inferences which have here

been made, to find that the earliest evidence of these alphabetic

numerals is found on coins of Ptolemy II. (Philadelphus)

assigned to 266 B. c. The lateness of this date accounts for

the later persistence of Herodianic signs. Alexandria, if any-

where, was the place where an antiquarian might have formed

the numerical alphabet, and a king have published it, with

effect. Coins are precisely the documents on which it is

desirable to state numbers as concisely as possible \ Other

evidence begins also soon after the, date of these coins and

in the same place. The oldest Graeco-Egyptian papyrus, which

is ascribed to 257 B. c. contains the numerals k9
'

(
= 29), and

after this alphabetic numerals are common enough on Ptolemaic

coins and papyri®. They do not occur, however, on stone-

inscriptions, as might be expected, till somewhat later. The

earliest instance is probably one of uncertain place (though

certainly from the Levant) ascribed to about 180 B. c. ^ or

another of Halicarnassus ® of about the same date. A
Rhodian inscription of the same time still uses the He-
rodianic signs® but soon afterwards, say from 150 B. c. the

alphabetic numerals are used invariably on all Asiatic-Greek

monuments

The cumulative evidence is surely very strong that the

1 It will be remembered that the

earliest Jewish evidence is found on

coins.

2 Now at Leyden, no. 379. See

Eobiou, quoting Lepsius, in Acad, des

Inscr. Suj. div. 1878, Vol. 9.

3 The K on some coins of Ptolemy

I. (Soter) and the double signs AA,

BB etc. on those of Arsinoe Phila-

delphi are of doubtful signification.

^ C. I. G. Vol. IV. pt. XXXIX. no.

6819. No. 6804 was clearly not written

at the dates which it mentions.

® C. I. G. Vol. II. no. 2655. .Franz,

Epigr. Gr. p. 349.

® In British Museum, not yet pub-

lished.

7 In the Asiatic inscription no. 6819,

above cited, and many more, the

numbers are arranged in their alpha-

betic order, e.g. 7]k, f/c. The coins of

Ptolemy Philadelphus above-cited were

struck at Tyre. These two facts may
perhaps suggest some Semitic infiuence

in the use of alphabetic numerals, but

I cannot attach any weight to them.

The practice of writing numerals in

their alphabetic order survivedin Mace-
donia and N. Greece till the 2nd cent.

See G. /. G. ii. nos. 1965, 1970, 1971.
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alphabetic numerals were first employed in Alexandria early

in the 3rd century B. c. It remains to be added that two of the

foremost Greek mathematicians were during this century very

much interested in the farther abbreviation of Greek numerals.

Archimedes (b c. 287—212) and Apollonius of Perga (flor.

temp. Ptol. Euergetes B. c. 247—222) both suggested new

modes of stating extremely high numbers, the former in his

the latter probably in his (£)kvt6klov. These will

be described later on but are mentioned here to show that

probably arithmetical symbolism was one of the Alexandrian

subjects of inquiry at precisely the time when the new symbol-

ism first appears on Alexandrian records.

34 . But it is time to return to the alphabetic numerals as used

in calculation. Fractions {Xeirra) do not appear on inscriptions

but are represented in MSS. in various ways. The most common
methods are either to write the denominator over the numerator

or to write the numerator with one accent and the denominator
Ka —K(L

twice with two accents each time (e.g. or ox kcu' Ka").

Submultiples, or fractions of which the numerator is unity, are

the most common. With these, the numerator is omitted, and

the denominator is written above the line or is written once

with two accents, (e. g. or X/3" = h Some special signs are

found, viz. signs similar to X, C and B for J and w" for

Brugsch gives, on the authority of Greek papyri^, the signs
|

for

addition, ^ for subtraction, and for a total. Another com-

mon compendium is the form X for iXarrcov and its inflexions

1 For some more minute details see

Nesselmann, Alg. der Gr. pp. 112—115.

Hultsch, Metrol. Scriptt. i. pp. 172

—

175. Friedlein Zalilz. pp. 13—14.

It is to be remembered that though

fractions with high numerators occur

in Greek writers, yet they represented

only the ratio between the numerator

and denominator. In calculation, they

were reduced, as among the Egyptians,

to a series with uniij’’, for numerator

and these two conceptions of a fraction,

as a ratio and as a portion of the unit.

were alone permissible in Greek arith-

metic. See Cantor Vorl. pp. 107, 174,

405. Hankel, p. 62, and Hultsch, loc.

cit.

2 Numerorum Demoticorum Doctrina,

1849, p. 31. See plate i. appended

to Friedlein Zahlz. and reff. there

given.

® In Heron’s Dioptra (ed. Vincent

p. 173) and the scholia to the Vati-

can Pappus (ed. Hultsch, Vol. in. p.

128). Nesselmann, Alg. Gr. p. 305 and

n. 17.
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It remains to be mentioned only that the Greeks had no cipher.

The d which Delambre found in the Almagest is a contraction

of ovhev, and occurs only in the measurements of angles,

which happen to contain no degrees or no minutes b It stands

therefore always alone and is not used as a digit of a high

number. The stroke which Ottfried Muller found on an Athenian

inscription, and which Bockh thought to be a cipher, is clearly

explained by Cantor^ as the iota, the alphabetical symbol

for 10.

35 . Of calculation with these alphabetic numerals very

little mention is made in any Greek literature. It would seem

from the technical names for addition and subtraction (viz.

a-vvrcOemc and acpacpeLV, vire^atpetv) and from some passages

of classical authors thg^t these operations were generally per-

formed on the Multiplication, also, was, if possible,

performed by addition^, but it cannot be doubted that an

expert reckoner would master a multiplication-table and have

the alphabetic signs at his fijager-ends. For such a person, for

a mathematician, that is, who was competent to read Archimedes,

Eutocius, a commentator of the 6th century after Christ, performs

a great number of multiplications with alphabetical numerals

The date of the writer and the work to which they are appended

alike show that these are masterpieces of Greek arithmetic.

A specimen or two, with modern signs added for more convenient

explanation, may be here inserted :

1 Astronome Ancienne, i. p. 547,

II. pp. 14 and 15. Theon in his com-

mentary says nothing of this 6 which

indeed may be only the introduction

of late transcribers who knew the

Arabic signs (v. Nesselmann, Alg. Gr.

p. 13S, and note 25. Eriedlein, Zahlz.

p. 82).

2 See Math. Beitr. p. 121 sqq. and

plate 28. Hultsch, Scriptt. Metrol.

Graeci, Praef., pp. v. vi., Friedlein,

Zahlz. p. 74.

* Cf. Theophrastus Char. (ed. Jebb)

IV. n. 10 and xiii, n. 2.

4 Lucian, 'Ep/^ortyuos, 48. Friedlein,

Zahlz. p. 75.

5 Torelli’s ed. of Archimedes (Oxford,

1792), Circuli Bimensio, p. 208 sqq.

The forms as they stand in MSS. are

given p. 216, See also Nesselmann,

Alg. Gr. pp. 116—118. Hankel, p.

56. Friedlein, Zahlz. p. 76, where

many misprints in Nesselmann are

corrected.

G. G. M. 4
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a^6

0-^6

8 a

M M,/3

2C5

- 265

40000, 12000, 1000
a

.7% '1 12000, 3600, 300

a T fee

^

M cTfce

1000,

70225.

800, 25

The mode of proceeding is apparent on the face of this example.

Each digit of the multiplier, beginning with the highest, is

applied successively to each digit of the multiplicand beginning

with the highest. Example's of multiplication, where fractions

are involved, are also given by Eutocius. One of them is as

follows ^

:

L S'

jyiy L S'

y

M ^acf) '^v

y _ _
N\ p\ e I3l

^6 \6 aL lS'

^acj) S’L S' 7}'

'^v yS' 7]' LS"'

8013 J i

3013 i i

OOOOOOoTsOOOO^oOO, 750.

30000, 130, 5, 21.

9000, 39, H, i 1
1500, 61, i i

750, 31, 1 tV

^082689 tV.

^^7

M ^/3 'xttO ts"'.

Multiplications are given also by Heron of Alexandria B.C.

100) and are conducted in precisely the same way as those of

Eutocius ^ In other words, for 700 years after the introduction

1 In this specimen, the letter' L re-

presents the Greek sign for See

above, p. 48.

2 It will he observed here that

Eutocius treats 13 as a single digit.

He knewthe multiplication table for 13.

3 Geometria, ed. Hultsch, 36 and 83,

pp. 81 and 110. They are printed

also by Friedlein, Zahlz. pp. 76, 77.

The second of them begins

:

id' Kdl XeTrrd TpiaKoaTorptra Ky' cJv 6

TToXi'TrXacrtao'/ros yiverai outojs’ id' i5'

pPS"'* /cat id' rd Ky \y" Xy' tk^' \y' \y'

K.T.X. In modern figures, the problem

is 14|fxl4||.

It is worked out as follow^s

:

14 X 14 = 196 : 14 X 11=W = If x H =

W and 11 X 11 ( = M .A

.

The sum (opiov) is 196-V/ + -jV • 3-3=
216 + • 33'
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of the alphabetic numerals, no improvement was made in the

style of Greek calculation. And if such were the performances

of professional calculators, it nlay be conceived that those of the

unlearned were yet more clumsy. Thus Hankel ^ quotes from

a work written as late as 944 A. D., some multiplications in w^hich

the writer finds by addition that 5 times 400 is 2000 and that

5 times 9 are 45 ! It can hardly be doubted that some 'Greek

compiled a multiplication table and that children at school were

practised in the use of it, as Roman children were, but no trace

of such a table survives nor is any clear mention of it made
in any Greek writer.

36 . Ho example of simple division nor any rules for

division are found in Greek arithmetical literature. The

operation must have been performed by subtracting the

divisor or some easily ascertained multiple of the divisor from

the dividend and repeating this process with the successive

remainders. The several quotients were then added together

But the Greeks had no name for a quotient and did not conceive

the result of a division as we do. To a Greek 5 was not the

quotient of The • operation did not discover the fact that

5 times 7 is 35 but that a seventh part of 35 contains 5, and so

generally in Greek a division sum is not stated in the form

‘‘Divide a by 5,” but in the form “Find the 5th part of a.”

This is the sort of nomenclature which would naturally be

expected among a people who were constantly compelled to

resort to the with its concrete symbols.

But though there is no instance of a simple division, there

is more than one of what, in our schools, is called ‘ compound ’

division, where the dividend and the divisor both consist of a

1 p. 55, citing De argumentis lunae,

wrongly attributed to Bede. [Patro-

logia, ed. Migne, Vol. 90, p. 702.) On
p. 56 Hankel gives a division from the

same book. To divide 6152 by 15,

multiples of 15 are first tried in order

up to 6000. The remainder is 152.

Then 15, 30, 60, 90, 120, 150. Re-

mainder 2. The answer is 400 + 10

and 2 over.

2 The process with whole numbers

may be inferred from that with frac-

tions. Heron [Geometria, ed. Hultsch,

12. 4, p. 56) divides 25 by 13, finds a

quotient 1 + 4 + + xV+ x^x adds

these terms together to 1^|. Obviously

the intermediate stages were xl= lt
= 4 + ^4 = 4 + yf etc. See Friedlein,

Zahlz. p. 79.

4—2
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whole number with fractions. These occur in Theon s com-

mentary on Ptolemy’s fieyaXi] crvvra^L^ (the Almagest). Here

for astronomical purposes it is frequently necessary to conduct

operations with degrees and the sexagesimal fractions, minutes,

seconds etc. ('irp^ra e^rjKoo-rd, Sevrepa e^r^KocTTa, etc.)h The

rules for such operations are easy to perceive, if it be re-

membered that degrees are the units, minutes g^^ths and seconds

gg^Q^ths of the unit. Hence Theon rightly premises that where

a dividend consists of degrees, minutes, seconds, etc,, division by

degrees produces a quotient of the same denomination as the

dividend : division by minutes produces a quotient of the next

higher denomination to the dividend : division by seconds a

quotient of two denominations higher than the dividend etc.

And in multiplication, of course, the denominations are similarly

lowered. There is no occasion here to give a specimen of

Theon’s multiplication, for it follows precisely the same lines as

that of Eutocius, exhibited above, p. 50. But it is desirable to

show his method of division, since no other specimen of the

process is procurable. He divides acj^te k" le"' (i.e. 1515® 20' 15")

by Ke Lp' i" (i.e. 25® 12' 10") in the following manner'"^:

1 The Latin for these was partes

minutae, partes minutae secundae. The

sexagesimal system is beyond question

of Babylonian origin. In Greek ma-

thematical literature, the circle is

divided into 360 parts {r/x-^fxaTa or

fjLoipai) first in the 'Ava<popLK6s of Hyp-

sicles (cir. b.c. 180). The division of

the diameter into 120 parts with sexa-

gesimal fractions appears first in Pto-

lemy (cir. A.D. 140), but was probably

introduced byHipparchus (cir. b.c. 130).

This trigonometrical reckoning was

never used save by astronomers. See

Cantor, Varies, pp. 70, 76, 274, 311,

336, 351. Hankel, p. 65. Friedlein,

Zalilz. pp. 81—82. Nesselmann, Alg.

der Griech. pp. 139—147. Theon’s

Commentary (ed. Halma) pp. 110—119.

185—6. A summary of Hypsicles’ book

is given by Delambre, Astron. Anc. i.

See also post §§ 55, 140.

2 Theon does not himself give a

scheme of a division, as he does of a

multiplication. He merely describes

the process. The scheme in the text

with modern figures is from Delambre,

Astron. Anc. ii. p. 25. A translation

of Theon’s words is given by Nessel-

mann, p. 142.
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25® 12'
10"J1515®

20' 15" (60® 7' 33"

25® X 60® = 1500®

Remr. 15® = 900'

920' (bringing down 20' from dividend.)

12' X 60® = 720'

Remr. 200'

10^^x60®= 10'

Remr. 190'

25® X 7' = 175'

Remr. 15' = 900"

915" (bringing down 15".)

12' X 7'= 84"

Remr. 831"

10" X 7' = 1" 10"'

Remr. 829" 50"'

25® X 33" = 825"

Remr. 4" 50"' = 290'"

12' X 33" = 396'"

The quotient therefore 60® 7' 33" is a little too high, but he e

Theon leaves it. The length and timidity of the operation

sufficiently show with what difficulty it was performed^.

37. There is another operation, the Extraction of a square

root, which—though indeed no specimen of it with ordinary

numbers occurs in any Greek writer,—was so frequently per-

formed, and at such an early date, by- Greek arithmeticians

that some mention of it must be made in this place. Archi-

medes in his Circuli Dimensio^ gives a great number of

approximate square-roots. He states, for instance, that is

1 There is extant a meagre tract on etc. Halle, 1879. See also the preface,

Multiplication and Division with Sexa- pp. xii. xvi. of Hultsch’s iii. Vol. of

gesimal Fractions, attributed either to Pappus.

Pappus or to Diophantus. It was edited 2 Prop. in. pp. 206—208 (ed. Torelli).

by 0. .Henry, Opusculum de Multiplic. The whole work is given post § 126.
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greater than whicli is greater than : so also

^/349,450 > 591J and 7l,373,94:3ff > 1172J and

A4^72,132Jg > 2339i^

He does not, however, give any clue to the mode by which he

obtained these approximations. Nor does his commentator

Eutocius, but the latter states that the rule for finding an

approximate square-root (ottcl)? Set crvv€yyv<; Ty)v BvvafjuevT^v

irXevpav evpelv) was given by Heron in his Metrica, by

Pappus, Theon and several other commentators on Ptolemy.

Only one of the works, to which Eutocius here alludes, is now
extant. Theon, in his commentary on the Almagest, gives the

rule, and an explanation of the rule, and some examples, of

extracting a square-root with sexagesimal fractions. It is clear

that Archimedes did not use Th eon’s method, and no other is

^ The approximations might still he

improved. 591f, 1172f, and 2339| are

nearer to, and also smaller than, the

roots of the numbers in question. Other

roots which Archimedes gives, are too

large. Nesselmann, Alg. Gr. p. 108

—

110. From the fact that Archimedes

gives both too small and too large ap-

proximations, it has been supposed

that he used continued fractions, but

(apart from the difficulty of suggesting

a Greek symbolism for these) it is ob-

jected to this theory that Archimedes’

approximations are not so close as

those which continued fractions would

produce. Many other modes, by which

he might have found his values for ^3,

have been suggested. The simplest

(De Lagny’s) is as follows. Archime-

des selected fractions such that the

square of the numerator is nearly 3

times the square of the denominator.

He would in this way find two series

:

T» b ffj o'l') 'VxTr > \/3: and

>5 TTJ 1t» ijh ItIt < s/‘d.

Both these series arc constructed on the

same principle, each numerator being

twice the preceding numerator -f thrice

the preceding denominator, and each

denominator being twice the preceding

denominator -f the preceding numera-

tor. This is closely similar to the pro-

cedure of Diophantus. Archimedes,

however, takes the 6th term of the

first series and only the 4th of the

second. It is therefore essential to this,

as to every other explanation of the

same kind, that Archimedes be supposed

to have been less careful with one ap-

proximation than with the other. (For

more theories and criticisms thereon

see Heiberg, Qiiaestiones Archimedeae,

1879, pp. 60—66.) As it is unlikely

that Archimedes, if he had a scientific

method, would have failed to use it

rigorously, some writers (e.g. Nessel-

manu, loc. cit. and Friedlein, p. 81) are

of opinion that he found his approxi-

mations only by repeated trial: others

however (e.g. Cantor, Vorl. pp. 272—4,

and Heiberg swp. cit.) believe that he

had a method which we cannot dis-

cover.
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forthcoming in any Greek writer. It would seem also, from

Theon’s language, that his method was by no means old or

familiar, and we must conclude, therefore, in default of evidence,

that the earlier Greeks found square-roots by experiment only.

The process would certainly take a long time, but we have no

reason to suppose that the Greeks were unwilling to spend a

long time on a simple arithmetical problem. They may, of

course (without going so far as Theon s method), have derived

many useful hints from geometry : e. g. the square-root of a

number is twice that of one quarter of the number : or 4 times

that of or 9 times that of etc., and in this way, they may

easily have reduced the number to be experimented on down to

some reasonable limit. It is useless, however, to expend

conjecture on a subject on which there is not a particle of

evidence.

38 . Theon’s method of extracting a square-root may be best

explained by a paraphrase of his own words. “I ought to

mention ” he says “ how we extract the approximate root of a

quadratic which has only an irrational root. We learn the

process from Euclid II. 4, where it is stated :
' If a straight line

be divided at any point, the square of the whole line is equal to

the squares of both the segments together with twice the

rectangle contained by the segments.’ So, with a number

like 144, which has a rational ^ j ^
root, as the line aj3, we take a y

lesser square, say 100, of which the root is 10, as ay. We
multiply 10 by 2, because there are two rectangles, and divide

44 by 20. The remainder 4 is the square of j8y, which must be

2. Let us now try the number 4500, of which the root is

67'^ 4' 55''. Take a square a^yS, containing 4500 degrees

{fioipai). The nearest square number is 4489, of which the

side (root) is 67°. Take arj = 67®, and ae^g the square of arj.

The remaining gnomon contains 11°, or 660'. Now divide

660' by 2a7], i.e. 134. The quotient is 4'. Take €0, rjK— 4',

and complete the rectangles 6^, ^k. Both these rectangles

contain 536' (268' each). There remain 124', = 7440". From
.this we must subtract the square ^X, containing 16". The
remaining gnomon ^XS contains 7424". Divide this by 2 olk
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(= 134® 8'). The quotient is 55". The remainder is 46'' 40'",

which is the square X7,
of which the side is nearly enough 55".”

a 7] K 8

e

g 7

So in general Theon concludes “ when we seek a square-root, we
take first the root of the nearest square-number. We then

double this and divide with it the remainder reduced to minutes

and subtract the square of the quotient, then we reduce the

remainder to seconds and divide by twice the degrees and

minutes (of the whole quotient). We thus obtain nearly the

root of the quadratich” In this procedure, with its continual

references to a geometrical figure, we have a conspicuous

instance of the fact, stated at the beginning of this chapter, that

Greek Xojlo-tlki] must often have sought its rules in the

discoveries of the scientific dpiOfiijTLKi]. No doubt it was so in

many other cases. It is hardly to be believed that while

philosophers were aware of the modes of finding a Greatest

Common Measure and a Least Common Multiple and well

versed in the treatment of series and proportions, the common
people should have been unable to adapt these results of

dpLdfjbTjTLKY} to the needs of their own daily calculation. The

meagre records of Greek logistic, however, contain no mention

1 Theon gives another example, also as the result. The procedure is ex-

with a figure. In this case he finds the actly the same as in the preceding

square root of 2® 28' and finds 1® 34' 15" example.

670 4'

4489 268'

4' 268' 16"

55" 3688" 40"'
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of any of these subjects. The theoretical treatment of them is

alone known and this belongs to dpid/ubTjTiKij the subject of the

next chapter.

39 . Before closing this account of XoyiarLKg, it remains to

add a few facts, isolated here either because they did not have,

or do not seem to have had, any real influence on the methods

of Greek calculation or because the original report of them is so

meagre or doubtful or disconnected that it would have caused

unnecessary disturbance to have mentioned them before.

It has been stated, already (sup. p. 48), that in the Srd

century B.c. the abbreviation of the Greek arithmetical symbolism

attracted the attention of {inter alios) Archimedes and Apol-

lonius. This remark, however, though it has been often made
with less reserve, seems to some writers to convey a suggestio

falsi, inasmuch as abbreviation of the symbolism was not the

ostensible object of the works in which Archimedes and

Apollonius proposed their improvements in arithmetical nomen-

clature. It is, therefore, desirable that some fuller account of

these works should be given than could be conveniently

inserted elsewhere.

In a pamphlet entitled (in Latin trans.

arenarius ‘the sand-reckoner’) addressed to Gelon, king of

Syracuse, Archimedes begins by saying that some people think

the sand cannot be counted, while others maintain that, if it

can, still no arithmetical expression can be found for the

number. “ Now I will endeavour ” he goes on “ to show you,

by geometrical proofs which you can follow, that the numbers
which have been named by us (? me) and are included in my
letter^ addressed to Zeuxippus, are sufficient to exceed not only

the number of a sand-heap as large as the whole earth but of

one which is as large as the universe. You understand, of

1 Torelli’s Archimedes, pp. 319 sqq.

It is printed also, in Heiberg’s Quaes-

tiones Archimedeae. It is probable that

Archytas of Tarentum, whom Horace
{Od. I. 28. 1) calls ‘numero carentis

arenae mensorem,’ had been busied

with the same problem as that of the

\pa/xfxiT7]s. Archytas was a contempo-

rary of Plato and at least 100 years

earlier than Archimedes.

2 It appears from c. i. sec. 7 that this

letter was entitled dpxat. It is clear

that it was concerned only with the

nomenclature which Archimedes is now
about to introduce again (cf. also c. hi.

sec. 1) and not with any special problem.
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course, that most astronomers mean by ‘the universe’ the

sphere of which the centre is the centre of the earth and the

radius is a line drawn from the centre of the earth to the centre

of the sun.” (But Archimedes himself would be willing to sup-

pose the universe a sphere as large as that of the fixed stars,

according to Aristarchus of Samos \) Assume the perimeter of

the earth to be 3,000,000 stadia^, and in all the following cases

take extreme measurements. The diameter of the earth is larger

than that of the moon, and that of the sun is larger than that of

the earth. The diameter of the sun is 30 times^ that of the

moon and is larger than the side of a chiliagon inscribed in a great

circle of the sphere of the universe^ (This is proved geometri-

cally.) It follows from these measurements that the diameter

of the universe is less than 10,000 times that of the earth® and

is less than 10,000,000,000 stadia®.

Now suppose that 10,000 grains of sand not < 1 poppy-seed,

and the breadth of a poppy-seed not < ^^^th of a finger-breadth.

Further, using the ordinary nomenclature, we have numbers up

to a myriad myriads (100,000,000). Let these be called the

first order {irpd)TOi dpLOgoi) and let a myriad myriads be the

1 It is at this point that Archimedes

mentions the theory of Aristarchus of

Samos (advanced in his virodecrets) that

the earth goes round the sun and that

the orbit of the earth is comparatively

a mere spot at the centre of the sphere

of the fixed stars. Archimedes does not

seem to have understood this language

and certainly did not adopt this theory.

See Heiberg’s note, op. cit. p. 202. A
treatise of Aristarchus Be distantia

lunae et soUs is extant. See Wallis’

Works Vol. III. and Delambre Astron.

Anc. I. ch. V. and ix.

2 ‘Though some,’ adds Archimedes,

‘ take it at only 200,000 stadia. I will

take it at 10 times the approved size.’

He refers to Eratosthenes, who calcu-

lated the circumference to be 252,000

stadia. Delambre i. ch. 7. A stadium

was nearly 200 yards.

^ Eudoxus, he says, made it 9 times,

Pheidias the son of Acupater 12 times

and Aristarchus between 18 and 20

times larger than that of the moon.

4 Aristarchus, he says, made it yi-^th

of the zodiacal circle, but his instru-

ments cannot have been able to make

so nice a measurement. Archimedes

goes on to describe his own apparatus,

by which he found that the diameter of

900 9Q0
the sun is between (i-®*

27' 0" and 32' 56"). See Delambre Astr.

Anc. I. c. IX.

5 Following the rule that the dia-

meter of a circle is less than ^ of the

perimeter of any inscribed regular poly-

gon, above a hexagon.

^ Following the rule that the circum-

ference of a circle is more than 3 times

its diameter.
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unit of the second order (Sevrepoo dpLOgoi) and let us reckon

units, tens, etc. of the second order up to a myriad myriads

:

and let a myriad myriads of the second order be the unit of

the third order (rpcroL dpidpLoi) and so on ad lib. If numbers

be arranged in a geometrical series of which 1 is the first term

and 10 is the radix, the first eight terms of such a series

(10'^—10^) will belong to the first order: the next eight to the

second order and so on. Thus, the terms from 1 to 10 millions

may be called the first octad

:

10® to 10^® may be called the

second octad and so on\ Using these numbers, and following

the rule that spheres are to one another in the triplicate ratio of

their diameters, Archimedes ultimately finds that the number

of grains of sand which the sphere of the universe would hold is

less than a thousand myriads or ten millions of the 8th octad.

This number would be expressed in our notation by 10®® or 1

with 63 ciphers annexed.

40 . Now though this work is ostensibly devoted to a

fanciful subject and though it is full of references to recondite

discoveries in astronomy, geometry and dpL6yr]TL/c7j, yet it is

plain that it contains matter which might have had, and

perhaps was intended to have, an important bearing on the

^ At this point Archimedes incidental-

ly adds that it will be convenient

ixov) to observe the following fact. In

any geometrical series beginning with

1, if any two terms be multiplied, the

product will be a term as far from the

greater of the two multiplied as the

lesser was from unity, and as far from

unity as the sum of the distance of both

the multiplied terms, less 1. E.g. in

the geometrical series a, b, c, d, e,f, g,

h, i, k, I, where a is unity, dxh=l, and

I is as many terms (less l),from a as d

and h together. It will be seen that

Archimedes is referring to the fact

which we express by saying that

He does not again

refer to this fact, and does not other-

wise, as some say, anticipate the method
of logarithms. I have omitted from

the text a further nomenclature which

Archimedes suggests. There may be n

octads of the first period, of which the

last number will be This num-

ber, will then begin the first

octad of the second period and so on.

See Heiberg op. cit. p. 59. Nesselmann

pp. 122—125.

It may be mentioned here also that

the Greeks always began a geometrical

series from 1, though they could give

no reason for the practice. They did

not know that l = ?^®. Theon Smyr-

naeus (ed. Hiller, p. 24) says explicitly

that “1 is not a number, but is the

beginning of number,” and this was the

common Greek notion, though incon-

sistent with their practice. See Cantor

Vorles. pp. 134, 368. Aristotle iUeiap/i.

XIII. 8, etc.
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Greek symbolism, wbich belongs to XoycarLKrj. This matter

also had previously been published, without any practical appli-

cation, in the lost ^Ap^di, addressed to Zeuxippus. It deals

indeed, as we know it, entirely with nomenclature and not a

word is said of symbolism. But it is pretty clear (see especially

the last note) that Archimedes’ procedure was to write down
the powers of 10 in order from 1 as far as necessary, then to

divide the series into groups of 8 terms each and, when it was

necessary to multiply two terms together, merely to add the

numbers of their places in the series and so find at a glance

their product and the name of the product. It can hardly be

doubted that in writing down the powers of 10, in order to

bring them within a manageable space, he employed a symbol-

ism \ He would have required a symbolism of only 10 signs.

Thus if a, (3, 7, 8, e, 6, k, \ were his symbols for numbers

from 1 to 10, then

his first octad might be, a, A®, —A^,

„ second „ „ A“'—A^',

„ third „ „ A®"—A^".

On this principle, such a number as 1,957,362 would be written

\^K\fe\^7]Xyy\^^'^/3. This symbolism, of course, is more cumbrous

than ours but it is far shorter than the Herodianic and far more

convenient than the common Greek alphabetic signs. If adopted,

it would have immensely simplified procedure in the four

rules of arithmetic ;—would have brought it in fact nearly to

the perfection of the Indian method. Yet, whatever symbolism

Archimedes himself used (if any), it is quite certain either that

he did not publish it or that it never obtained any vogue.

No allusion to it occurs in the ^^rapigiTrj^ or in any other

Greek mathematical work. But a good many reasons may be

suggested why a new symbolism would, in Archimedes’ time,

have been singularly inopportune. The alphabetic numerals

1 To take only the second octad, the suggested in the text is not intrin-’

last term of this is 10^® or a thousand sically improbable. Compare the Ma,

million millions. This, in Greek, is M/3, etc. of Apollonius to be presently

XtX6a/ctj /JLvplat fivptddes fivpLadcjv. The mentioned, and compare the proposi-

force of language, even Greek, will tion quoted from lamblichus below

not go much further. The symbolism § 63.
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had in all probability been lately introduced at Alexandria.

The professors of dpiOfiTjTiKT] did not require a new symbolism,

since geometrical figures were sufficient for the problems which

they dealt with. Thirdly, the efficacy of Archimedes’ symbols

would at first appear principally in calculations with very high

numbers and there was then hardly anybody, save Archimedes

himself, who was interested in calculations with such numbers.

41 . That it is not at all far-fetched to suppose that

Archimedes had in mind, when he invented his new nomen-

clature, the improvement of customary methods of calculation,

will be apparent if we consider the similar work of Apollonius.

At the end of his commentary on the Girculi Bimensio,

Eutocius says that he had done his best to explain the

numbers used by Archimedes, but that Apollonius, using other

numbers, had in his '£Ikvt6k(.ov
^ obtained a closer approxima-

tion to the arithmetical value of the ratio ^

diameter

He then mentions some other persons who had maliciously

criticised Archimedes and adds ‘ They use multiplications

and divisions of myriads, which it is not easy to follow

unless one has been through a course of Magnus’ Arith-

metic^ ’

; and concludes by recommending Ptolemy’s method

with sexagesimal fractions. The passage is so vaguely worded

that it is impossible to feel sure whether the ^GIkvtoklov, or

‘Aid to Delivery,’ of Apollonius has any connexion whatever

with the multiplications of myriads mentioned afterwards. The
book itself is lost and its name does not occur elsewhere. At
any rate, Apollonius did invent a system of multiplication

connected with a nomenclature in which myriads played a

large part. Some account of both is to be gathered from the

fragmentary 2nd Book of Pappus, but unfortunately the first

half of the book is lost and with it the name of Apollonius’ work

and much precise information have doubtless disappeared.

1 The first ed. had ^Qk-vtoPoov. The Zahlz. p. 78, thinks it was a ‘ready-

emendation was originally Halley’s reckoner’ or multiplication-table only.

{pref. to his ed. of Apollonius) and was ^ This work is not elsewhere mention-

subsequently found to be correct by ed. It is tantalising to think what it

reference to two Paris MSS. Friedlein, may have contained.
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Apollonius, taking, like Archimedes, a geometrical pro-

gression of the powers of 10 from 1 to lO'', divided them into

groups of 4 terms, tetrads and not octads. The first tetrad

(1—1000) he called [jbovdhe^ : the 2nd (10,000—ten millions)

fjbvpid^e’^ aTTkal : the 8rd fivpidBe^; SiTrXat etc. The first

number of each tetrad is the unit of that tetrad, and the

higher tetrads are (at least in Pappus) distinguished by the

signs Ma, My8
,
M7 etc. Thus the number 5,601,052,800,000

or, according to the Greek division, 5,6010,5280,0000 is written

by Pappus My . e koX My5 . /cal Ma .

The fragment of Pappus contains examples, selected by that

writer, illustrative of Props. XI —XXV. in the original work

of Apollonius, The examples are of the following kind :

Prop. XIY. Let there be given several numbers, each less

than 100 but divisible by 10. It is required to find their

product without multiplying them. Let the numbers be

50, 50, 50, 40, 40, 80. The pythmenes of these are 5, 5, 5, 4, 4, 3,

which, multiplied together, produce 6000. There are also 6 tens,

which, divided by 4, give quotient 1 and remainder 2. The

product of these tens is therefore 100 of the dirXal.

This, multiplied by 6000, produces 60 of the pypidhe^ StTrAat.

This is the product of the numbers proposed.

The other examples are all of this sort (the numbers

in each case being varied^) and all are designed to illustrate

a new rule, viz. that in multiplying numbers together, the

coefficients of the powers of 10 only need be multiplied. These

coefficients are called irvOpueve^ or fundamental numbers. Thus

1 Tlie,concluding part of Apollonius’

book is given (though not in Ap.’s

words) by Pappus (ii. 25). The last

prop, was “Let two or more numbers

be given, each less than 1000 but divi-

sible by 100 : and other numbers each

less than 100 but divisible by 10 : and

finally other numbers less than 10. It

is required to find their product.” After

performing this, Apollonius returned

to the problem which he had originally

set himself, viz. to multiply together

all the numerals contained in the line

’Apre/iiSos /cXetre Kpdros ’^^oxov hvia

KOUpaL.

The product is pLvpLades rpto-zcatSe/ca-

TrXat ppS*' doodeKaTrXai T^rj' ej^SefcaTrXat

5(J, or

196.1000013+368.1000012+4800.10000“.

Pappus then tries his own skill on

another line

;

Mriviu deide Bed ATj/XT^repos dyXaoKapirov

which seems carefully chosen to avoid

high numbers.
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8 is the 'TTvOg-qv of 80: 5 of 500: 7 of 7000 etc. In multiplying

80 by 600, it is necessary only to multiply 8 by 6 . The product

of the powers of 10 may be discovered by reference to the

geometrical progression of tetrads. It is evident that this

latter part of the rule is borrowed from the discovery of

Archimedes mentioned above. We have here, in fact, the

suggestion of the with only an easy alteration (hardly

an improvement) of the nomenclature, put into actual practice.

Yet still there is no reference to an abbreviated symbolism.

In many places^ Pappus says that xA^pollonius used ypaggal,

which made his solutions far more readily intelligible : but

these jpagiiaL were beyond question straight lines. They were

used presumably to represent the terms in the progression of

tetrads and also to represent other numbers and the

of these, but they can hardly have served any higher purpose

than merely to prevent mistake. It must have been a certain

convenience to distinguish the pythmenes in this way : e.g.

i a p a

K P (7 P etc.

X ry T fy

where a, /3,

7

etc. are pythmenes not only of tens (t, k, \ etc.), but

of hundreds (p, a, r etc.) I In spite, however, of the absence of

evidence, it is difficult to believe that Apollonius wrote his

book without using some special symbolism and it is still more

marvellous if, having written the book, he did not see that

it could not become popular without an accompanying symbol-

ism. His symbolism, however, if he had any, was not published

or never attracted attention, and thus he, as well as Archimedes,

lost the chance of giving to the world once for all its numeral

signs. That honour was reserved, by the irony of fate, for

a nameless Indian of an unknown 'time, and we know not whom
to thank for an invention which has been as important as any

to the general progress of intelligence.

1 E.g. II. 6. 5: 8. 28: 18. 10. of the numbers. Thus it does not ap-

(Hultsch’s Ed.) pear that y is the Trvdfx'rjv of X or r
,
but

The TTvdfj^hes of tens and hundreds, it is easy to see that rpeh is the irvdfx'qv

though absolutely concealed by the of rpidKovra and rpiaKocnoi.

symbols, were discernible in the names
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42. Another arithmetical symbolism is also attributed to the

Greeks. It was first mentioned by Noviomagus {De Numeris,

Cologne, 1539. Lib, i. c. 15) who said it was used by ‘ Chaldaei

et astrologih’ It consisted of a curious set of signs (somewhat

resembling railway-signals) in which the value of the symbol is

determined, as it were, by the position of an arm attached to a

post. Thus '— is 1
: r— is 10 : —'is 100 and —

]

is 1000 :
— is

2 : -]— is 20 :
—^ is 200 and —p is 2000. Z is 3 : ^ is 4 :

=1— is 5 : is 6 : (=_ is 7 : ^ is 8 and — is 9. All these

signs, when reversed, represent ten times higher values, as with

those for 1 and 2 above exhibited. The ‘ post ’ was often drawn

upright: f, h, etc. and several ‘arms’ might be attached

to one post. Thus ^ = 5543: '-1< = 2454: 1i = 3970 etc. It

cannot be said that this is a first-rate symbolism : but it is

compact in form and it preserves also, to the eye, the analogies

which are the greatest aids to calculation. It is impossible to

say what is the origin of these signs, or where or at what date

they came into use. Friedlein thinks they may be really

Chaldaean and have belonged to the mediaeval art of horoscopy^,

which Noviomagus professed,

43. Calculation seems to have been regularly taught in

Greek schools as early as there were any schools at all^ It

became also a favourite subject of the Sophists, among whom
the polymath, Hippias of Elis, was its most famous professor^

Socrates himself seems to have had a limited liking for it.

According to Xenophon®, he told his pupils to learn XojiafjLoix^,

but to beware of the idle pursuit of this as of other branches of

learning : so far as was useful (or beneficial, wc^eXi/iov) he was

always willing to forward them. As we have just previously

1

Nesselmann (pp. 83—84) took them

from Heilbronner’s Historia Matheseos

(pub. 1742). Heilbronner said he got

them from Geminus and Hostus, a

German antiquary of the 16th cent.

Cantor {Math. Beitr. pp. 166—167)

found the passage in Hostus, who refers

to Noviomagus. Friedlein finally un-

earthed the passage oi Johannes Novio-

magus who says he had the signs from

Joh. Paludanus Noviomagus. The MS.
of Geminus, which Heilbronner saw,

remains undiscovered.

2 Friedlein, Zahlz. pp. 12, 13.

3 See the Excursus on Education in

Becker’s Charicles.

^ Cf. Plato Protagor. 318 e. Hipp.

Min. 367—368.
® Memor. iv. 7. 8. For geometry, see

IV. 7. 2.
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been informed, by the same authority, that Socrates thought

there was no need for more geometry than would enable a man
to measure or parcel out a field, it may be presumed that he

preferred the practical art of logistic to the theories of dpcOfir}-

rcfctj. Plato, however, was not of the same mind. His dislike

of the sophists extended to the subjects which they taught and

he is, on many occasions, as was seen at the beginning of this

chapter, careful to distinguish the vulgar logistic from the

philosophical arithmetic. But calculation cannot be discarded

by the philosopher any more than by the merchant : so Plato,

in his ideal constitution {Legg. 819 b), directs that free boys

shall be taught calculation, a “purely childish” art, by pleasant

sports, with apples, garlands etc. It makes men “ more useful to

themselves and wide-awake.” Contemptuous language of this

sort, used by the most influential of Greek thinkers, set the

fashion to too many generations of mathematicians. Euclid is

said to have been a Platonist : he certainly never meddled with

logistic. His successors, with few exceptions, were affected by

the same prejudice. The contributions of Archimedes and

Apollonius to the art of calculation have been already men-
tioned. Hipparchus calculated a table of sines (so to say)

and thus probably introduced the art of reckoning with sexa-

gesimal fractions for astronomical purposes. The brilliant and

above all things practical Heron of Alexandria seems, in his

to have offered some improvements in Greek calcu-

lation. A long era of Neo-Platonism and Neo-Pythagorism

followed, but to this time belonged probably the Apollodorus,

whom Diogenes Laertius (viii. 12) mentions, and Philo of

Gadara and the Magnus whom Eutocius praises. Nothing of

these writers now survives, and it is very unlikely, judging

from the calculations of Theon and Eutocius himself, that they

produced any stir in their own day. Logistic was practically

abandoned as hopeless after Apollonius’ time. ^ApcdpLTjrLKTj

became the hobby of the more ingenious spirits and to this

science belongs the last brilliant achievement of Greek mathe-

matics, the invention of algebra.

G. G. M. 5



CHAPTER lY.

GREEK THEORY OF NUMBERS. Arithmetim.

44. The history of dpiOfjLTjn/cij, or the scientific study of

numbers in the abstract, begins in Greece with Pythagoras

(cir. B.c. 530), whose example determined for many centuries its

symbolism, its nomenclature and the limits of its subject-matter.

How Pythagoras came to be interested in such inquiries is not at

all clear. It cannot be doubted that he lived a considerable

time in Egypt^ : it is said also, though on far inferior authority,

that he visited Babylon. In the first country, he would at

least have found calculation brought to a very considerable

development, far superior to that which he can have known
among his own people : he would have also found a rudimentary

geometry, such as was entirely unknown to the Western Greeks.

At Babylon, if he ever went there, he might have learnt a

strange notation (the sexagesimal) in arithmetic and a great

number ofastronomical observations, recorded with such numeri-

cal precision as was possible at that time^ But Pythagoras

1 It is asserted by Isocrates, Laud.

Busir. c. 11. 28, p. 227, and CaUimaclms

ap. Died. Excerpt. Vatic, vn

—

x. 35.

It is implied in Herod, n. 81, 123,

Aristotle Metaph. i. 1. These are the

most ancient authorities. The Egyp-

tian origin of Greek geometry is at-

tested in many more passages, to be

cited below. TLie visit to Babylon is

first mentioned Strabo xiv. 1. 16.

2 Both these statements may be

illustrated by one example. One Baby-

lonian document contains a statement

of what portions of the moon’s face are

successively illuminated in the first

fifteen days of the month. These are

stated as 5, 10, 20, 40, 1. 20, 1. 36,

1. 52 etc. where 1. 20, 1. 36, 1. 52 etc.

stand for 80, 96, 112 etc. parts out of

240 into which the moon was divided.
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was not the first to be initiated into this foreign learning, for

the Asiatic Greeks had certainly, before his time, acquired a

good deal of Chaldaean astronomy and had even improved upon

Egyptian geometryb ISTor was the bent of his mind altogether

singular in his time. Among the Greeks everywhere, a new
j

speculative spirit was abroad and they were burning to discover!
^

*

some principle of homogeneity in the universe. Some funda-j

mental unity was surely to be discerned either in the matter

or the structure of things. The Ionic philosophers chose the

former field : Pythagoras took the latter. But the difficulty is

to determine whether mathematical studies led him to a philo-

sophy of structure or vice versa. The evidence seems to favour

the former view. The geometry which he had learnt in Egypt

was merely practical. It dealt mainly with such problems

as how to find the area of given plane figures, the volume

of given solids : its highest flight was to find roughly the ratio

between the diameter and the circumference of a circle. Its data

generally, its discoveries always, were numerical expressions.

Given the number of a certain straight line, it could find the

number of a certain curve
:
given the numbers of two or three

straight lines it could find the numbers of a superficies or a solid.

It was natural to nascent philosophy to draw, by false analogies

and the use of a brief and deceptive vocabulary^, enormous con-

clusions from a very few observed facts : and it is not surpris- i

ing if Pythagoras, having learnt in Egypt that number was \

essential to the exact description of forms and of the relations \

of forms, concluded that number was the cause of form and 1

See Hincks in Trans. Royal Irish Acad.

Polite Lit. XXII. 6, p. 406 sqq. Cantor,

Vorles. pp. 72—76.

^ Thus Thales had invented some

propositions in scientific geometry. He
had also predicted an eclipse and is

said by many different authorities to

have had much astronomical know-

ledge. Herodotus {ii. 109) says express-

ly that the knowledge of the polos and
gnomon (on these sundials see below,

p. 145 n.) came to the Greeks from

Babylon. Pliny {Hist. Nat. u. 76) attri-

butes the introduction of the gnomon

to Anaximenes ; Suidas to Anaximander

{sub voc.).

2 Primitive men, on seeing a new
thing, look out especially for some

resemblance in it to a known thing, so

that they may call both by the same

name. This developes a habit of press-

ing small and partial analogies. It

also causes many meanings to be at-

tached to the same word. Hasty and

confused theories are the inevitable

result.

0



68 GREEK THEORY OF NUMBERS. Arithmetica.

^ so of every other quality. Number, he inferred, is quantity

and quantity is form and form is quality \

The genesis of the Pythagorean philosophy here suggested

has strong historical warrant. It is certain that the Egyptian

geometry was such as I have described it : the empirical

knowledge of the land-surveyor, not the generalised deductions

of the mathematician. If not certain, it is at least undeniable

that Pythagoras lived in Egypt and there learnt such geometry

as was known. It is certain that Pythagoras considered number

to be the basis of creation^ : that he looked to arithmetic for

his definitions of all abstract terms and his explanation of all

natural laws : but that his arithmetical inquiries went hand in

(

hand with geometrical and that he tried always to find

arithmetical formulae for geometrical facts and vice versa^.

45 . But the details of his doctrines are now hopelessly lost.

For a hundred years they remained the secrets of his school in

Italy and when at last a Pythagorean philosophy was published'*,

it was far more elaborate than the teaching of its founder.

Even the tenets of this later school come to us only by hearsay.

Of Pythagoreans we know something from Plato and Aristotle

^ It was Pythagoras who discovered

that the 5th and the octave of a note

could be produced on the same string

by stopping at | and \ of its length

respectively. Harmony therefore de-

pends on a numerical proportion. It

was this discovery, according to Han-

kel, which led Pythagoras to his phi-

losophy of number. It is probable at

least that the name liarmonical propor-

tion was due to it, since

lamblichus says that this proportion

was called virevavrla originally and that

Archytas and Hippasus first called it

harmonic. Nicomachus gives another

reason for the name: viz. that a cube,

being of 3 equal dimensions, was the

pattern apfiovLa: and having 12 edges,

8 corners, 6 faces, it gave its name to

harmonic proportion, since

12 : 6 :: 12-8 : 8 -^ 6 .

Yide Cantor, Varies, p. 152. Nessel-

mann, p. 214 n. Hankel, p. 105 sqq.

2 Some such vague term must neces-

sarily be chosen. Aristotle {Metaph. i.

5) says that the Pythagoreans held that

number was the apxv nal ws vXr] roh

ovai Kal irddr] re Kal e^eis. It is not

possible to extract from these words a

definite theory of the functions of num-

ber in the cosmogony : it seems to be

‘ everything by turns.’

3 See Diog. Laert. viii. 12 and 14.

In the second passage Pythagoras is

said, on the authority of Aristoxenus,

to have introduced weights and mea-

sures into Greece.

^ By Philolaus. See Diog. Laert.

VIII. 15. 85. The silence of Pythagoras

was proverbial. On this and the facts

stated in the text cf. Ritter and Preller,

Hist. Phil. §§ 96, 97, 102—128.
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and the historians of philosophy, but hardly anything remains

which is attributed, by any writer of respectable authority, to

Pythagoras himselfh He is probably responsible for some of the

fantastic metaphysics of his followers. Aristotle expressly says

that he referred the virtues to numbers and perhaps he agreed

with Philolaus that 5 is the cause of colour, 6 of cold, 7 of mind

and health and light, 8 of love and friendship and invention.

Plutarch says that he held that the earth was the product of

the cube, fire of the pyramid, air of the octahedron, water of the

eicosahedron, and the sphere of the universe ofthe dodecahedron^

But doctrines of this kind, though they imply an interest in

mathematics, are not themselves contributions to mathematical

knowledge and do not require to be discussed in this place.

For our present purpose, it is sufiScient only to consider what

advances in arithmetic are due to Pythagoras or his school,

without speculating on the mode or order in which they were

obtained or their place in the Pythagorean philosophy.

The following discoveries, at any rate, with the accompanying

nomenclature, are as old as Platons time. All numbers were

classified as odd or even {dprioi or irepicraroL), Of these the odd

numbers were gnomons {<yvcou,op€<;) and the sum of the series of

gnomons from 1 to 2n-^l was a square (rerp <270)1/09) ^ The
root of a square number was called its side QifXevpd). Some com-

pound numbers have no square roots. These latter were oblongs

{irepopLij/cei,^ or 7rpofj.rjK€L^)\ Products of two numbers were

plane (eViTreSot), of three solid {(TTepeoi)^, A number multiplied

twice into itself was a cube {Kv^o^f, Some more classifications

^ Porphyrius, a Syrian, late in the

3rd century after Christ, and lambli-

chus both wrote a ‘life of Pythagoras.’
2 See Ritter and Preller, pp. 72, 79,

§§ 116, 117, 127.
2 Aristotle, Phys. m. 4. The gnomon

is properly a carpenter’s instrument,

a T square with only one arm. The
name was afterwards used in other

senses.

* See Plato Theaet. 147n—148 b. A
surd was probably at this early time
called inexpressible or irrational

Tos or aXo7os), but this is not certain.

Plato calls it a 56vafus.

® Cl Aristotle on Plato in PoL v.

12 . 8 .

* Plato, Rep. VIII. p. 246. The same

passage invites one or two other little

remarks, dpidfibs dvb in later Greek

writers means ‘the square of’ : apidfios

v-rrh means ‘the product of.’ dirbaraais

once in Plato {Timaeus 43 d) means the

‘interval’ between the terms of an

arithmetical progression, adverts may
(like av^Tj, Rep. vii. 528 b) mean ‘ mul-
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are given by authorities of less antiquity. Any number of

the form
71 (n 1 )

2
was called triangular (rpiycovos:). Perfect

(reXeLot) numbers are those which are equal to the sum of all

their possible factors (e.g. 28 = 14-2 + 4 + 7 + 14): for similar

reasons numbers are excessive {v^rtzpreXecot) or defective {eKXi-

nret^y. Amicable {(jiiXioi) numbers are those of which each is the

sum of the factors of the’ other (e.g. 220 = 1 + 2 + 4 + 71 + 142 :

284 = 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110)1

Beside this work in classification of single numbers, numbers

were treated in groups comprised either in a series {eKOeai^i or

dvaXoyla crvv€^Tj<;) or a proportion {dvaXoyta). Each number

of such a series or proportion was called a term {opo<;). The

mean terms of a proportion were called Three

kinds of proportion, the arithmetical, geometrical and harmonical

were certainly known^ To these lamblichus® adds a fourth,

the musical, which, he says, Pythagoras introduced from Babylon.

It is composed between two numbers and their arithmetical

and harmonical means, thus a : - ::
--- -

: h (e.g. 6 : 9 :: 8 : 12).
Ji fl + 0

Plato knew that there was only one expressible geometrical

mean between two square numbers, two between two cubes®.

It is a familiar fact that the geometrical proposition, Euclid i. 47,

is ascribed to Pythagoras. It follows that a right-angled triangle

may be always constructed by taking sides which are to one an-

tiplication.’ For other terms see Jour-

nal of Philology, xn. p. 92.

^ Theon Smymaeus (ed. Hiller) pp.

31, 45.

’ lamblichas in Nicom. At. (ed. Ten-

nulius) pp. 47, 48.

® It will have been observed that

much of our modem nomenclature (e.g.

‘square,’ ‘cube,’‘surd, ’‘term,’ ‘mean’)

is taken from the Latin translation of

the Greek expressions.

* Philolaus in Nicomachus Introd.

At. (ed. Hoche) p. 135, Archytas in

Porphyrius, od Ptol. Harm, cited by

Gruppe, Die Fragm. des Archytas, etc.

p. 94. This quotation (with one or two

more) I take from Cantor, Vorl. p. 140

sqq. The statement in the text might

be easily confirmed from other sources.

See for instance Simplicius on Ar. de

Anima 409, b. 23. Dr Allman doubts

{Hermathena v. p. 204) whether these

proportions were first applied to num-

ber, bat see Ar. An. Post. i. 5. 74,

and Hankel p. 114.

® In Nicom. Ar. (ed. Tennulius) pp.

141—2, 168.

® Timaeus, 32 b. Nicomachus, iTitrod.

Ar. II. c. 24.
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other in the ratios 3:4:5, and to these numbers therefore

great importance was attached in Pythagorean philosophy'. To
Pythagoras himself is ascribed a mode of finding other numbers

which would serv'e the same purpose. He took as one side an

odd number {2n -f 1) : half the square of this minus 1 is the other

side (2n^ + 2n)

:

this last number plus 1 is the hypotenuse

{2n^ -f 2n + 1). He began, it will be noticed, with an odd number.

Plato ® invented another mode, beginning with an even number
(2n): the square of half this phis 1 is the hypotenuse 1)

:

the same square minus 1 is the other side — 1).

46. A few more details expressly alleged by, or inferred from

hints of, later authors might be added to the foregoing but it is

impossible to frame with them a continuous history even of the

most meagre character. We cannot say precisely what Pythagoras

knew or discovered, and what additions to his knowledge were

successively made by Philolaus or Archytas or Plato or other

inquirers who are known to have been interested in the

philosophy of numbers

Proclus says^ that the Pythagoreans were concerned only

with the questions 'how many' (to iroaov) and 'how great’

(to TrrjXiKov) that is, with number and magnitude. Ifumher

absolute was the field of arithmetic: number applied of music:

stationary magnitude of geometry, magnitude in motion of

^ This rule was known to the Egyp-

tians, the Chinese and perhaps the

Babylonians at a very remote antiquity,

V, Cantor, ForZ^s.pp. 56, 92,lo3-—4. The
discovery is expressly attributed to Py-

thagoras {Yitruvius, is. 2). Cantor

(Varies, p. 153 sqq.) is of opinion that

Pythagoras knew this empirical rule

for constructing right-angled triangles

before he discovered Eucl. i. 47.

2 Proclus (ed. Friedlein), p. 428. It

will be noticed that both the Pythago-

rean and Platonic methods apply only

to cases in which the hypotenuse differs

from one side by 1 or 2. They would
not discover such an eligible group of

side-numbers as 29 : 21 : 20. See

Nessehnann, pp. 152—3. These are

provided for by the first lemma to

Euclid, X. 29. Infra, p. 81 n.

® Plutarch, Quaest. Conv. viii. 9.

11—13, says that Xenocratea, the pupil

of Plato, discovered that the number of

possible syllableswas 1,002,(KX),000,000.

This looks like a problem in combina-

tions, but the theory of combinations

does not appear in any Greek mathe-

matician, and the number seems too

round to have been scientifically ob-

tained. (Cantor, Varies, pp. 215, 220.)

^ Ed. Friedlein, pp. 35, 36. For

the distinction between number and

magnitude compare Aristotle, An. Post.

I. 7 and 10, and Cat. c. 6.
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spheric or astronomy \ But they did not so strictly dissociate

discrete from continuous quantity. An arithmetical fact had

its analogue in geometry and vice versa; a musical fact had

its analogue in astronomy and vice versa, Pythagorean arith-

metic and geometry should therefore he treated together, but

there is so .little known of either, that it seemed unadvisable,

for this purpose only, to alter the plan of this hook. The his-

tory of Greek geometry is so much fuller and more important

and proceeds by so much more regular stages than that of

arithmetic, that it deserves to be kept distinct.

The facts above stated are sufficient to show that, from the

first, Greek dpvdixrjTLKr; was closely connected with geometry

and that it borrowed, from the latter science, its symbolism

and nomenclature. It had not yet wholly discarded the abacus^

,

but its aim was entirely different from that of the ordinary

calculator and it was natural that the philosopher who sought

in numbers to find the plan on which the Creator worked,

should begin to regard with contempt the merchant who wanted

only to know how many sardines, at 10 for an obol, he could

buy for a talent.

47 « Whensoever and by whomsoever invented, most^ of the

known propositions of dpL6fi7]riKi^ w^ere collected together, not

much later than 300 b. C. by HucHd in his Elements, Only

the seventh, eighth and ninth books are specially devoted to

numbers, but it cannot be doubted that the second and the

tenth, though they profess to be geometrical and to deal with

1 These four sciencesbecame, tiirough

the Pythagorean influence of Alexan-

dria, the quadrivium of early mediae-

valism. The subjects of this fourfold

education are mentioned in the familiar

line “ilftts canit: Ar numerat: Ge pon-

derat: Ast colit astra.” To this, how-

ever, another trivium Rhetoric, Dialec-

tic and Grammar, were added (“ Gram
loquitur; Dia vera docet; Ithet verba

colorat ”) and these seven are the god-

desses of science and art who attend at

the nuptials of Philology and Mercury

celebrated by Martianus CapeUa (cir.

A.D. 400). The same seven branches of

education are discussed by Cassiodorus

(bom about a.j>.468), De Artibus as

DiscipUnis Liberalium Litterarum.

» E.g. Plato, Legg, 737 e, 738 a says

that 5040 has 59 divisors including all

the numbers from 1 to 10. A fact of

this sort must have been discovered em-
pirically by means of the abacus,

5 Archimedes uses one or two propo-

sitions which are not in the Elements.
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magnitudes, are intended also to be applicable to numbers.

The first 8 propositions of the second book, for instance, are for

geometrical purposes proved by inspection. No one can doubt

them who looks at the figures. But as arithmetical propositions

they are not self-evident if stated with any arithmetical symbol-

ism. In such a form, the first 10 propositions (the 9th and 10th

are not treated in the same way as the first 8) are as follows^

:

(1) (zh -1- cic -f* cccl -f* ).

(2) {a + 5)^ == (a 4- 6) a H- (a + h) h.

(o) (a -i- h) a — ab -h

(4) (a 4- by — + 2ab.

(5) gJ = (.-6)J4-g-6y.

(6) (a + b)b +
gj ~ (2 0 ’

(7) (ct 4“ by 4“ == 2 (cj 4" 5) (2 4"

(8) 4i(a + b)a + ¥= {2a 4- by.

(9) („-6)^ + 5» = 2gy+2g-6y.

(10) 6= + (a + 5)>=2(|y +2g + 6y. ,

The eleventh proposition* is the geometrical way of solving

the quadratic equation a{a — b) — b^ and the fourteenth solves

the quadratic a* = be. From this statement, in algebraical

form, of the chief contents of the 2nd Book, it wiU at once

be seen what an advantage Greek mathematicians found in a

geometrical symbolism. These propositions are all true for in-

commensurable, as well as commensurable, magnitudes, irrational

as well as rational, numbers. But in numbers the Greeks had

no symbolism at all for surds.

1 It mil be obserred that Theon’s

method of finding a square root, cited

above, is foxmded on End. n. 4. So

also Diophantus {infra, p. 104) uses

Euclid n. as an arithmetical book.
2 This is the famous problem of ‘ the

golden section,’ which is used again in

Euclid IV. 10 for the purpose of con-

They knew that surds existed,

structing a regular pentagon. Euclid’s

solution of the quadratic would be in

algebraical form,

(Cantor, Vorles. pp. 226, 227.)



vm



74 GREEK THEORY OF NUilBERS. Arithmeiica.

that there was no exact numerical equivalent, for instance, for

the root of 2 : but they knew also that the diagonal of a

square : side :: : 1 ^ Hence lines, which were merely con>

venient symbols for other numbers became the indispensable

symbols for surds. Thus, Euclid’s 10th book, which deals with

incommensurables, is in form purely geometrical, though its con-

tents are of purely arithmetical utility : and every arithmetical

proposition, in the proof or application of which a surd might

possibly occur, was necessarily exhibited in a geometrical form.

It is not, therefore, surprising that a linear symbolism became

habitual to the Greek mathematicians and that their attention

was wholly diverted from the customary arithmetical signs of

the unlearned.

48* It is in the 7th book of the Elements® that 'Euclid

first turns to the consideration of numbers only.

It begins with 21 definitions which serve for the 7th 8th and

9th books. The most important of these are the following :

(1) Unity {jjLovd<;) is that by virtue of which everything

is called ‘ one ’ {ev Xeyerat) \

(3) and (4) A less number, which is a measure of a

^ This fact, according to an old scho-

liast (said to be Proclus) on the 10th

book of Euclid, remained for a long

time the profoundest secret of the Py-

thagorean school. The man who di-

volged it was drowned. See Cantor,

Varies, pp. 155, 156, quoting Enoche,

Untersuch. iiher die Schol. des Prokhis

etc., Herford, 1865, pp. 17—28, esp.

p. 23.

* The use of lines of course avoided

the necessity of calculation. A rect-

angle represented a product : its side a

quotient. Thus, for instance, Euclid

(x. 21), wishing to show that a rational

number divided by a rational gave a

rational quotient, states that ‘if a ratio-

nal rectangle be constructed on a ra-

tional line, its side is also rational.’

* In the 7th 8th and 9th books, no

geometrical figures are given, as indeed

none are necessary. In the 7th book

according to our MSS, numbers are

generally represented by dots (in Pey-

rard’s edition by liries), in the 8th book

particular numbers are given by way of

illustration : in the 9th book both dots

and particular numbers occur. Euclid

probably used lines only, except where

a number was to be represented as odd

or even, in which case perhaps he used

dots. At any rate, he does not, any

more than in the geometrical books,

use division, and his treatment of the

propositions is purely synthetic, as

elsewhere.

The arithmetical books of Euclid are

included in Williamson’s translation,

Oxford 1781—1788.
^ In the 2nd definition /lovds means

‘the unit.’ ‘Number’ is there defined

as ‘ro /lovdowi' uvyKeijxeuou TrXijdos.'
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grecater, is a aepo? (part) of it : but if not a measure, it is }iep7]

{parts) of the other \

(6) and (7) ‘Odd’ and ‘even’ numbers {irepia-aoL and dpnof).

(11) ‘Prime’numbers (Trpwro? 6 puovdhi piovov pberpovpbevo^;)-

(12) Numbers ‘prime to one another’ {irpooTo^ irpo^

dWp\ov<^).

(13) Composite numbers {avvQeroC).

(16) Products of two numbers are ‘plane’ {iirLTre^ot) and

each factor is a ‘ side ’ (TrXevpd).

(17) Products of three numbers (TrXevpal) are ‘solid’

{(TTepeol).

(18) ‘ Square ’ numbers (jerpaycovo'^ o lcrdKL<; ccro<^).

(19) ‘Cubes’ (kvI3o<; 6 Icrdfci^; iadici<i).

(20) Numbers are ‘proportional’ (avdXoyov elal) when

the 1st is the same multiple, part or parts of the 2nd as the 3rd

of the 4th.

(21) Plane and solid numbers are ‘similar’ wliea their

sides are proportional.

(22) A ‘perfect’ (reXem?) number is that which is the

sum of all its factors (/xepT}).

It will be seen that this nomenclature is purely Pythagorean.

The class of ‘ prime ’ (TrpwTot) numbers is not indeed mentioned

by any earlier writer now known, but it can hardly be doubted

that they were defined by the Pythagoreans, as a sub-class of

odd numbers. The book deals with the following matters :

Prop. I. If of two given unequal numbers the less be

subtracted from the greater as often as possible and the

remainder from the less and the next remainder from the pre-

ceding remainder and so on, and no remainder is a measure of

the preceding remainder until I is reached, the two given

numbers are prime to one another. This (which is proved by

reductio ad ahsiirdum) leads to

Propp. IL, III. To find the greatest common measure ofTwo
or more’ numbers. (The procedure is identical with ours.)

Propp. IV.—XXII. These deal with submultiples and fractions

^ fjiepo^ earlv dpid/j-os dpidpiov, 6 eXdcr- This word /uL^pr) is the plural of pLepos,

<x(j}v Tov pei'fovos, brav Karaperp^ tov and is a very inconvenient expression.

pei^ova. pepr} Se, brav p^ Karaperp^.
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and apply to numbers the doctrines of proportion which had been

previously proved for magnitudes in the 5th book b

Propp. XXIII.—XXX. Of numbers prime to one another.

E. g. XXIX. If two numbers are prime to one another, all their

powers are prime to one another.

Propp. XXXI.—XXXIV. Of prime numbers in composition.

E. g. XXXIV. Every number is prime or is divisible by a prime.

Propp. XXXV.—XLi. Miscellanea : e. g. xxxv. To find the

lowest numbers which are in the same ratio with any given

numbers, xxxvi. To find the L. c. M. of two, and xxxviii. of

three, numbers. XLI. To find the lowest number which is

divisible into given parts.

49 . The 8th book deals, in the first half, chiefly with

numbers in continued proportion {^piOfiol e^rj^ dvdXoyov) e. g.

III. If any numbers are in a continued proportion and are the

least which have the same ratio to one another^, the extreme terms

will be prime to one another, vii. If the 1st term is a divisor

of the last, so is it of the 2nd. But a few other propositions are

inserted, e. g. V. Plane numbers are to one another in the ratio

which is compounded of their sides. XI. There is one mean
proportional between two squares and xii. two between two

cubes. The last half of the book (Propp. xiv. to xxvii.) is

entirely devoted to the mutual relations of squares, cubes and

plane numbers, e. g. xxii. If three numbers are in continued

proportion and the first is a square, so is the third, xxiii. If

four numbers are in continued proportion, and the first is a

cube so is the fourth.

50. The 9th book continues the same subject for a few

propositions: e.g. ill. If a cube be multiplied by itself the

product is a cube. Then follow (viii.—xv.) some more pro-

positions on numbers in continued proportion, or geometrical

series: e.g. IX. If in a series, commencing from unity, the 2nd

term is a square, so are the following terms. And if the 2nd

1 E.g. IV. Every number is either and conversely,

a fjt.ipos or fxipr) of every higher number. 2 e. are the least which can form a

V. VI. If A is the same /x^pos [ox pL^pyj) of continued proportion of the same num-

i> as C of D, .4 + (7 is the same oiB + D. her of terms, bearing the same ratio to

XIX. li A :B:\C :D, then AD =BC one another, as in the given case.
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term is a cube, the following terms are cubes. A few propositions

on prime numbers (xvi.—XX.) are then given of which the

most important is XX. The number of primes is greater than

any given number. The discussion of odd and even numbers

is then introduced (xxi.—xxxiv.), the propositions being of such

a character as xxiv. If an even number be subtracted from

an even number, the remainder is even. Then suddenly,

appears the following proposition, xxxv. ‘'If any numbers be

in continued proportion, and the first term be deducted from

the 2nd and also from the last, the remainder of the 2nd will be

to the 1st as the remainder of the last to the sum of all the

preceding terms Stated in another form, this proposition is :

If a, ar, ar^, ar^... af be a geometrical series, then

ar — a : a :: {ar"" — a) : a + ar + ar^.
. . +

It is an easy step further to conclude that

a {ar^ — a)
a + ar-\- ar\ . . + ar =

ar — a

and thus to sum the series, but Euclid does not take this step.

The proposition, as it stands, is apparently introduced solely for

the purpose of proving the next (xxxvi.), the last in the book.

This is, in effect, that in a geometrical series of the powers
of 2 from 1 onwards, the sum of the first n terms {if a prime
mimher) multiplied by the nth teym is a perfect number^ In
the proof®, which is too long to be here inserted, the sum of n
terms is assumed to be known by simple addition.

^ Euclid takes only four numbers. His proof, put shortly, is as follows:

Let a :^7 ::^7 : 5 :: 5 : e^. Take 77; = f0= a, ^/c=j87 , fX= 5.

j

Then file
: fX :: fX: fe. Dividendo 1^6 : Ok:: ^k: k\:: ^XiXe

“ and componendo ^6 : Ok :: ^0 + ^k+ ^X:: dK + kX + Xc. By sub-

^ stitution (taking the terms backwards) €0 : a + j3y + d :: : a.

^ ^ i.e. ef- a : a + j87 + S :: 187- a : a. q. e. n.

€

^ Eaj' airb fxovados ottoo’oiovv api0/xot iKT€0Cb<TLV iv Trj dnrXcto'iovi avaXoyla
K.T.X.

3 A short proof is easy

:

l + 2 + 4 + 8+... + 2»^= 2^+i-l=l>.

2”p is a perfect number if

2«p= l + 2 + 4+...+2»^+p(l + 2 + 4+... + 2«-i)

which is obviously the case.

From this also it is evident that the proposition is untrue unless p is a prime

r
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Such was the dptOiuLTjTtKT] of rational numbers known in

Euclid’s time. Not all of it was of Euclid’s invention, but

it contains much the importance of which the later Greek

arithmeticians did not perceive and which, neglected by them,

was only in modern times resumed into consideration and

made the elementary foundation of a scientific theory of

numbers.

51 , The 10th book treats of irrational magnitudes and

treats them geometrically through a symbolism of irrational lines.

Definitions occur at intervals throughout the book. It

starts with the following

:

1, 2. Magnitudes are commensurable {avfi/jberpa) when they

are measurable by one and the same measure : contra, incom-

mensurable (dcrvpipLerpa).

3, 4. Straight lines are commensurable in square (Bvvdpiet

crvpbpieTpoL) when their squares may be measured by the same

unit of space {^(wpiov) : contra, SvvdpbeL davpbpberpoL^.

5. Hence, to any given straight line, there are an infinite

number. Nesselmann (Al^. Gr. p. 164 n.), after remarking that it is not

very easy to know whether a high number is prime or not, quotes from Fermat

(Varia 0pp. Math, Toulouse 1679, p. 177) the following rule. Write down the

powers of 2 minus 1 each and above them the corresponding exponents of the

powers: thus

, ^ ^ If the exponent is not prime, neither is the
12 3 4 5 6 7 etc. . ^ j.

* •

1 R 7 If: Aa 197 +
"power minus 1. If the exponent n is prime, the

^ power minus 1 is divisible only by numbers of the

form 2m?i + l. These can easily be tried. Fermat gives no proofs for his rule.

and his accuracy is not above suspicion.

1 As Euclid does not define the word

dvvap.Ls (whence potentia, ‘power’) it

may be desirable here to give some

account of it. The word 5i^j/ao-^ai.means

tp he the square root of (Plato, Theaet.

148 A is probably the earliest instance)

:

hence d^vajuas, as a rule, means the

square; but sometimes (Plato loc. cit.)

means a square root or rather a surd,

i.e. a square root which cannot be

otherwise described. A^vajuas is a more

general term than Terpaymos, which

is used only when a square figure is

contemplated. There is no evidence

(Jevons, Elem. Logic, p. 222.)

to show how dijuap.cs acquired this

mathematical sense. If the passage

Eudemi Fragm. (ed. Spengel) pp. 128

—

129 is really quoted from Hippocrates

of Chios, this is the earliest which con-

tains the technical dvvapcs. Alexander

Aphrodisiensis (ed. Bonitz, 1847, p.

56) says that dvvapivg was the hypote-

nuse, dvuaarevopevac the sides of a right-

angled triangle. These words, in this

connexion, probably mean ‘equalling’

and ‘equalled.’ If these names are

ancient, perhaps the technical use of

divapis grew out of them.
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number of straight lines commensurable or incommensurable,

some both in leogth and in their squares, some in square only.

Let this given straight line be called p'qr'q, ‘rational.’ Then

6, 7, f)7]Tal, rational straight lines, are commensurable with

it in length and square or in square only: lines incommen-

surable with it in length and square or in square, are called

dXoyoL^,

8, 9. The square of the pTjTTj is also ‘rational’ and so is

every square which is commensurable with it.

10, 11. Squares incommensurable with that of the prjTT^

are dXoyoc: so also are the sides of such squares. If a recti-

lineal figure be irrational, the sides of the square which is

of equal area with it are also irrational.

The book begins with 21 propositions on incommensurables

generally. Of these the most important are

:

I. If two unequal magnitudes be given and from the

greater more than half be subtracted and from the remainder

more than half and so on with successive remainders, the final

remainder will be less than the less of the two given magnitudes.

So also, if only halves be deducted. This proposition, that

a magnitude less than any given magnitude can be found, is the

basis of the method of Exhaustion of which so much and so

brilliant use is made in Greek geometry

11. If of two given unequal magnitudes the less be deducted

from the greater as often as possible and the remainder from

the less and the next remainder from the preceding remainder

and so on, and no remainder is a measure of the preceding, the

two magnitudes are incommensurable. (Compare vii. 1.)

HI. IV. To find the G. C. M. of commensurable magnitudes.

1 It will be observed that Euclid’s

nomenclature differs from the modern.

We call irrational all that he calls in-

commensurable : but with him a :

is rational, because a‘^:b is rational.

On the other hand, a Jh or any other

multiple of an incommensurable, is

with Euclid irrational, because a^Jb

and the rest are rectangles already and
cannot be squared. The of Euclid

serves the same purpose as what we
call ‘the standard unit’ of length or

space.

2 It is curious that Euclid does not

add the further proposition that ‘if two
given magnitudes are incommensura-

ble, there can be found a third, com-
mensurable with one of the given and
differing as little as we please from the

other.’ See Cantor, Vorles. p. 230.
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V.—IX. Commensurable magnitudes are to one another as

numbers to numbers: and their squares as square numbers.

Contra, of incommensurables and conversely.

XI. If four magnitudes^ are in proportion and the 1st is

commensurable (or incommensurable) with the 2nd so is the

Srd with the 4th. Here follow various propositions on com-

mensurables and incommensurables in proportion, on the sum of

two commensurables or incommensurables etc.

XXI. If a rational rectangle be constructed on a rational

line, the side of the rectangle is also rational (i.e. a rational

number divided by a rational gives a rational quotient). To

this is appended a Lemma, proving that the line or number,

whose square is irrational, is also irrational (a fact which was

provided for in the definitions). This lemma, which introduces,

so to say, the consideration of the expression J\/ah, leads to the

discussion of the medial line {^earj) in the 2nd part of the book.

The definition of is given in Prop. xxii. viz. The
rectangle contained by rational lines commensurable only in

square (i. e. axjh or .^/a/\/b) is irrational and the side of the square

which is equal to this rectangle is also irrational and may be

called fiear] (i. e. Ja'db, or else JVab, where, if numbers be con-

templated either a or b must not be square). The following

propositions xxill.—xxxv. deal with /juiaai or medials only.

They are of the following kind

:

XXIV. Medials may be commensurable with one another in

length and square or in square only.

XXY. Given two medials commensurable in length (e.g.

m^ab and n^ab), the rectangle contained by them (mnjai)
is medial.

XXVI. Given two medials, commensurable only in square

(e.g. Ja^/b and JcJb), the rectangle contained by them {Ja^)

1 This proposition is numbered x. in

Gregory’s edition (Oxon. 1703) the 10th

and 11th exchanging places.

^ The reason for the name is given

in the same place. If AB, BF are the

sides of an irrational rectangle, the

side of the square which is equal to

this rectangle, is a mean proportional

avdXoyov) to AB, BF. The name
‘medial’ is used in the text, as more
convenient.
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is either rational or medial (i.e. according as acb is square

or not).

Upon these two propositions follow several problems\ to

find medials, commensurable in line or in square, whose rect-

angle or square is of a given character : e. g. xxxili. To find

two medials commensurable only in square, such^that their

rectangle is medial and that the square of the greater exceeds

the square of the less, by the square of a line either {a) com-

mensurable or (p) incommensurable with the former. Two

similar problems on lines incommensurable in square conclude

the second part. All these lines are intended ultimately to form

part of binomial expressions (cf. infra, p. 83, n. 2).

At the xxxvilth proposition, some editor has introduced a

new heading, viz. tmv Kara crvvOecnv e^dBoov and again at

Prop. LXXiv. ^Ap')(fj Twv Kar d^alpecriv i^dSoyp. These heooads

are six groups, of six propositions each, on irrational binomials.

There is thus a set of 86 propositions (xxxvil.—LXXII.) on bi-

nomials “formed by addition” and another of 86 exactly corre-

sponding propositions (lxxiv.—Cix.) on those “formed by sub-

traction.” The enunciation of Prop, xxxvil. runs :

* If two

rational lines, commensurable only in square, are added together,

the sum is irrational and may be called a hiterminaV (eV

Bvo ovopLaTwv). The difference of two such lines is, in Prop.

LXXIV., called apotome. The hiterminals are fh, and

a + fb: the apotomae are Ja — Jh; a — Jh and fa — h: but

altogether, twelve kinds of irrational binomials are distinguished.

Of these twelve, six are formed by addition and are described

and named in the first hexad : the other six are the corres-

ponding binomials formed by subtraction and are described and

named in the seventh hexad. The third hexad describes six

1 To Prop. XXIX. two lemmas are

appended, the first of which is ‘ To find

two square numbers, such that their

sum is a square number.’ This is

solved with the help of Eucl. ii. 6.

By that proposition, in the line

A D G B
1 1

AB .BG+CD^=BD\ AB . BG will

G. G. M.

represent a square number, if AB and

BG are both square or similar rect-

angular numbers. .40 is assumed to

be even.

The numbers which follow are

those of Gregory’s edition. Nessel-

mann, who used the Basle edition,

(pub. 1537, 1546, 1558) cites xxxii. for

XXXIII. etc.
,
the 30th proposition in that

6
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kinds of hiterminals, the ninth six kinds of apotomae, and these

are shown, in the following hexads, to be the squares of the

binomials of addition and subtraction first defined.

These few remarks being premised, to show the structure and

style of the remainder of the book, the effect of the whole may
best be given in the words of a most competent critic, as follows.

“Euclid investigates,” says Prof De Morgan\ “every possible

variety of lines which can be represented by \/(\/a + \/b), a and

h representing two commensurable lines. He divides lines which

can be represented by this formula into 25 species and he

succeeds in detecting every possible species. He shows that

every individual of every species is incommensurable with all

the individuals of every other species^; and also that no line of

any species can belong to that species in two different ways or

for two different sets of values of a and He shows how to

form other classes of incommensurables in number how many
soever, no one of which can contain an individual line which is

commensurable with an individual of any other class^ and (?) he

demonstrates the incommensurability of a square and its diago-

nal®. This book has a completeness which none of the others

(not even the fifth) can boast of : and we could almost suspect

that Euclid, having arranged his materials in his own mind, and

having completely elaborated the 10th book, wrote the preceding

books after it, and did not live to revise them thoroughly.”

edition being divided into two parts,

which are treated by Gregory as two

separate propositions.

1 Article Eucleides in Smith’s Diet,

of Gr. and Rom. Biography.

2 This sentence gives the effect of

the sixth hexads (Props. 67—71 and

104—108) which, however, contain

only 5 propositions each. They are

devoted to proving, by separate cases,

that “every line, commensurable in

length with a binomial irrational line,

is an irrational line of the same

species.” Nesselmann, p. 179.

3 This sentence gives the effect of

the second hexads (Props. 43—48 and

80—85). They are devoted to proving,

by separate cases, that “every binomial

irrational line can be divided into

its terms only in one point:" i.e. that

\Ja + n/5 cannot= \Jx + -^/y, unless a= x

and h = y. Nesselmann, p. 177.

4

This sentence gives the effect of

Prop. 116. Nesselmann, p. 182.

^ This refers to Prop. 117, which is

clearly not Euclid’s, as we have it.

The enunciation, for instance, begins

“Let it be proposed to prove” etc. and

two proofs are given.
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62. "‘The preceding enumeration/’ says the same writer

in another placed “points to one of the most remarkable

pages in the history of geometry. The question immediately

arises, had Euclid any substitute for algebra ? If not, how

did he contrive to pick out, from among an infinite number

of orders of incommensurable lines, the whole, and no more

than the whole, of those which were necessary to a com-

plete discussion of all lines represented by \/ {\/a + \/6), with-

out one omission or one redundancy? He had the power of

selection, for he himself has shown how to construct an infinite

variety of other species, and an algebraist could easily point out

many more ways of adding to the subject, which could not have

been beyond Euclid. If it be said that a particular class

of geometrical questions, involving the preceding formula and

that one only, pointed out the various cases, it may be answered

that no such completeness appears in the 13th book, in which

Euclid applies his theory of incommensurables. It is there

proved that each of the segments of a line divided in extreme

and mean ratio is an apotom^—that the side of an equilateral

pentagon inscribed in a circle is, relatively to the radius,

the irrational line called a lesser line^, as is also the side of

an icosahedron inscribed in a sphere—and that the side of

a dodecahedron is an apotome. The apotome then and the lesser

1 In the EngHsh (also in the Penny)

Cyclopedia, Art. “Irrational Quantity.”

A most cor ^plete summary of the con-

tents of h uclid’s 10th hook is here

given, followed by the remarks quoted

in the text. The book was evidently

a favourite with De Morgan. Nessel-

mann, p. 184, after remarking on the

unsuggestiveness of the linear sym-

boliam, says “Abstract thought alone

has extracted from these lines their

hidden secrets, which our formulae,

almost unasked, declare. Indeed I

think it is not too much to say that

this book, almost useless in its geo-

metrical form and therefore little

esteemed, is the very one which shows

us the old mathematician in his high-

est glory.”

2 See Prop. Lxxvii. compared with xl.

If two lines, incommensurable in square

and such that the sum of their squares

is rational but their rectangle is me-

dial, are combined, their sum and their

difference are both irrational. The

former is called rj fiel^ojv, the latter tj

iXdTTcov. Two such lines are found

earlier in Prop, xxxiv. They are re-

presented algebraically by

aBd or

6—2
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line are the only ones applied The most conspicuous pro-

positions of elementary geometry which are applied in the

10th book are the 27th, 28th and 29th of the 6th hook,

of which it may be useful to give the algebraical significance \

The first of these (the 27th) amounts to showing that

has its greatest value when a? = 1, and contains a limitation

necessary to the conditions of the two which follow. The 28th

is a solution of the equation ax — x^ = h, upon a condition

derived from the preceding proposition, namely, that \ shall

exceed h. It might appear more correct to say that the solution

of this equation is one particular case of the proposition, namely,

where the given parallelogram is a square : but nevertheless the

assertion applies equally to all cases. Euclid however did not

detect the two solutions of the question: though if the diagonal

of a parallelogram in his construction be produced to meet the

production of a line which it does not cut, the second solution

may be readily obtained. This is a strong presumption against

. his having anything like algebra
;
since it is almost impossible

to imagine that the propositions of the 10th book, deduced

from any algebra, however imperfect, could have been put

together without the discovery of the second root. The re-

1 Cantor, Varies, p. 228, gives practi-

cally the same algebraical equivalents,

which, he says, first appeared in Mat-

thiesen, Grundzilge der antik. u. mod.

Algebra etc. 1878. He does not seem to

have heard of De Morgan. As these pro-

positions are not usually printed, the

enunciations may be here subjoined:

XXVII. Of all parallelograms applied

to the same straight line and defective

by parallelograms similar and similarly

situate to that which is described on

half the line, the greatest is that which

is applied to half the line, and is similar

to its defect.

XXVIII. To a given straight line to

apply a parallelogram equal to a given

rectilineal figure and having its defect

similar to a given parallelogram : pro-

vided that the given rectilineal figure

be not greater than that which can be

applied to half the line, so that the

defects of the given rectihneal figure

and of that which is applied to half the

line be similar.

XXIX. To a given straight line to

apply a parallelogram equa^ to a given

rectilineal figure, and exctesive by a

parallelogram which is sirniilar to a

given parallelogram. \

In the figure AB if applied to the

line AC is defective {iWel-n-ei). AE
if applied to the line AB is excessive

(vireppdWii). See also Simson’s note

on these Propositions.
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maining proposition (the 29th) is equivalent to a solution

of ax -{-x^ — b: but the case of — ax — h is wanting, which is

another argument against Euclid having known any algebraical

reasoning.”

53 . It must be added, before quitting this book, that

Euclid nowhere alludes to any familiar example of an incom-

mensurable. Some editor (whose language and style of proof

differ noticeably from Euclid’s) has added, at the end of the

book. Prop, cxvii. proving that ‘the diagonal of a square is

incommensurable with the sideh’ Prof. De Morgan in one

place^ suggests that Euclid’s interest in incommensurables

was perhaps due to a suspicion that the circumference of a

circle was incommensurable with the diameter. In another

placed he suggests that Euclid had discussed some known

examples of incommensurables in his lost work on Fallacies

{irepl yjrevSapLwv), which, he thinks, was intended to be pre-

fatory to the Elements. Both suggestions, of course, are purely

conjectural. Hardly anything is known of the Greek theory,

of incommensurables before Euclid’s time. Their discovery is

expressly attributed to P}'thagoras^, but for a long time, the

sole known fact was that the diagonal of a square : the side ::

^2 : 1. To this, according to Plato®, Theodorus of Gyrene

added the fact that sides of squares represented by \/5 etc.,

up to VI7 were irrational. Theaetetus, a pupil of Theodorus,

made the generalization that the side of any square, represented

by a surd, was incommensurable with the linear unit. At a later

date, perhaps, he improved this into the form of Euclid x. 9 :

Two magnitudes, whose squares are (or are not) to one another

1

The proof is as follows. ‘ Suppose

the diagonal : side ::p:q, p and q being

whole numbers prime to one another.

Then p^= 2q^. p^ and p are, therefore,

even numbers. It follows that q, which

is prime to p, must be odd. But p,

being even, =2r. Therefore {2r)^ = 2q^

and q must be even. Which is absurd.’

This proof is twice referred to by Aris-

totle {An. Prior, i. c. 23. 41, a 26, and

c. 44. 55, a 37). It may be very old,

yet the method of reductio ad absurdum

is attributed to Plato.

2 Art. Eucleides in Smith’s Die. of

Biogr.

3 Art. ‘ Irrational Quantity ’ in Penny

Cyclop.

4 See sup7'a p. 74 n.

® Theaetetus, pp. 147 n-—148 b. In

this passage, the young Theaetetus says,

he made the same generalization for

cube roots as for square roots. Cube

roots are not mentioned anywhere in

Euclid.
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as a square number to a square number, are commensurable (or

incommensurable) and conversely b Democritus is said‘^ to have

written a treatise Trepl jpafjbfjiwu dXoycov koX vaarwv, but no

trace of it remains nor does any clue exist to the meaning of

vaarwv. It cannot be doubted that Euclid’s work contains at

least all that was known of the theory of incommensurables

before his time, and as Euclid left it, so it remained, untouched,

down to the 15 th century, when Lucas Pacioli de Burgo

resumed the study

b

54 . After the death of Euclid, the astonishing successes of

geometry in the hands of Archimedes and Apollonius and the

growing interest of astronomy seem to have attracted all atten-

tion to those sciences^ and, so far as we know, no substantive

work on the theory of numbers was produced for nearly four

centuries. Some small additions, however, were made en

passant to the theory of rational numbers by various mathema-

ticians. Thus, some theory of combinations was perhaps in-

vented. The problem, attributed to Xenocrates by Plutarch,

has been mentioned above (p. 71 n.), and Plutarch in the same

passage® states, without more, that Chrysippus (b. c. 282—209)

found that the number of possible combinations of 10 axioms

was over a million : but that Hipparchus showed that the

axioms, if affirmed, admitted of 101,049, and, if denied, of

1 The scholiast to Euclid x., said to

be Proclus (ed. Knoche, sujp. cit. p. 74n.),

expressly attributes Euclid x. 9 and 10

to Theaetetus. See Hankel, pp. 100

—

103.

2 Diog. Laertius ix. 47.

3 Nesselmann, p. 183.

4 Nesselmann, p. 187, gives many
instances of the changes of fashion in

mathematics. From the time of Ni-

comachus (a. d. 100) the theory of num-

bers became the Greek fashion. When
Leonardo Bonacci (a.d. 1292) brought

the Arabian algebra into Europe, this

also became the fashion for 400 years.

When Diophantus became known (Xy-

landcr 1571, Bachet 1G21) indetermin-

ate ecpiations became the favourite

study e.g. of Bachet ,_ Fermat, Pell,

Frenicle. The differential calculus

followed and occupied all attention tUl

Euler brought back the Diophantic

analysis, which was in fashion with

Lagrange,. Legendre, Gauss, Jacobi and

their contemporaries.

® Quaest. Conv. viii. 9, 11—13. Also

De Stoicorum Repugn, xxix. 3 and 5,

(Reiske’s ed. Vol. x. p. 330). Cantor

Tories, pp. 215, 220. (The first num-

ber attributed to Hipparchus is quoted

as 103,049 in De Stoic. Rep. where also

he is said to be ‘one of the arithme-

ticians’.) The Quaestiones Convivales

are also known as Symposiacon and

Disputationes Convivales.
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310,952’ combinations. Such results, however, may have been

obtained empirically, and certainly no theory of combinations

appears in any extant mathematical writer.

55. Eratosthenes the famous librarian of Alexandria (b.c.

275—194) invented a mode of distinguishing prime numbers,

which was called, after him, "the sieve’ {koo-klvov, cribrum) of

Eratosthenes. All composite numbers are ‘ sifted ’ out in the fol-

lowing manner^ The odd numbers are set out in order from 3

to as high a number as possible. Then every 3rd number from 3

is a multiple of 3 and may be rejected : every 5th number from

5 is a multiple of 5 and may be rejected : every 7th number from

7 is a. multiple of 7 and may be rejected, and so on. The

numbers ultimately retained are prime. Hypsicles (circa

B.c. 180), the author of the 14th and 15th books added to

Euclid’s elements, made some contributions to the theory of

arithmetical progression, which Euclid entirely neglects. The

first three propositions of his ava(j)opLic6<; (a little work on the

‘risings of the stars,’ dvaipopaiy are to the following effect.

(1) In an arithmetical series of 2n terms, the sum of the last

n terms exceeds the sum of the first by a multiple of :

(2) in such a series of 2n -t- 1 terms, the sum of the series is the

number of terms multiplied by the middle term
: (3) in such a

series of 2n terms, the sum is half the number of terms

multiplied by the two middle terms. Some more general

formula for the summation of arithmetical series perhaps led to

the following definitions, most of which are entirely unknown
to, or neglected by, Euclid^ “If as many numbers as you

please be set out at equal intervals from I, and the interval is

I, their sum is a triangular number: if the interval is 2, a

square

:

if 3, a pentagonal

:

and generally the number of

angles is greater by 2 than the interval.” This statement is

quoted from ‘ Hypsicles iv open ’ by Diophantus^
;
but whether

1 Nicomachus, Introd. Ar. ed. Hoche,

p. 29 sqq., and lamblichus’ Commen-
tary (ed, Tennulius) pp. 41, 42.

2 Described byDelambre^strow.^nc.

I. and Cantor Varies, p. 312.

3 Philippus Opuntius, a pupil of So-

crates and Plato, and earlier than Eu-

clid, is said to have written a work on

polygonal numbers. See Cantor Varies.

p. 143, quoting Westermann’s Bto-

7pa0ot, p. 446.

^ Prop. 8 of the treatise on Palyganal

Numbers. Nesselmann, p. 466. Cantor

Varl. p. 312.
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"0/309 (‘ the term ’) was the name of a book, or 0/309 here means

only the ‘definition’ of polygonal numbers, cannot now be

ascertained. This extension of polygonal numbers (however

originated) became a very favourite subject of later arithme-

ticians, to be presently mentioned.

Hipparchus (cir. B.c. 150) is said, by Arabian authorities, to

have written on the solution of Quadratic Equations \ Heron,

the ingenious mechanician and land-surveyor (b.c. 100), evi-

dently knew some algebraical processes which were strange to

Euclid, but he was not an arithmetician proper^, and the more

particular account of his work may be left for the history of

geometry. From this time dpiOix'qrLK'i^ may be said to dis-

appear at least from history for two centuries.

56. It was revived by Nicomachus, a native of Gerasa,

probably a town in Judaea. The date at which he lived may be

determined roughly by the two facts, that he himself quotes one

Thrasyllus®, who seems to have been the astrologer, friend of

the Emperor Tiberius, and that his work was translated into

Latin by Apuleius of Madaura, in the time of the Antonines.

He may be taken, therefore, to have flourished about 100 a.h.

He is said to have been a Pythagorean and to have written a

work on arithmetical theosophy, but the curious farrago^

entitled OeoXoyovgeva t^9 dpL6iJb7]TiKrj<;, is not his, for here

Anatolius is cited, the Bishop of Laodicea (a.d. 270) who wrote

a commentary on Nicomachus^ Two treatises of Nicomachus

are extant, the Enchiridion Harmonices in two books, and the

Introductio Arithmetica (elo-aycoyrj dpcdpLrjTtKg) also in two

1 Cantor Vorles. p. 313, quoting

Woepcke’s ed. of ^UAlgebre d'Omar

AlkhayydmV Paris 1851, Pref. xi

and Journal Asiat. v. (5th Series)

pp. 251—253.

2 For a specimen of his skill, see

below, p. 106.

3 In the Enchiridion Harmonices i.

p. 24 (ed. Meibomius, 1652). In the

same work, ii. p. 36, Ptolemy is cited,

but this is clearly an interpolation, for

it would be inconsistent with the trans-

lation by Apuleius, which is attested by

Cassiodorus de Arithmet. p. 555.

^ All the facts about Nicomachus are

collected, and the errors corrected, by

Nesselmann (pp. 188—191) who alleges

also that none of the mathematical

historians (including Montucla) can

have read Nicomachus at all. Nessel-

mann seems to have used an edition of

the Introductio published by Ast in

1817. Quite recently an edition has

been published in the Teubner series

(ed. Hoche) with a good preface.
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books. It is with the latter only that we are here concerned.

It was an extremely famous book in its day, and earned for its

author a distinction similar to that so long enjoyed in England

by Mr Cocker. Thus Lucian, wishing to compliment a calcu-

lator, says “You reckon like Nicomachus of Gerasak” The

number of commentaries on the Introductio also sufficiently

attests its importance. Beside the translation of Apuleius and

the notes of Anatolius, mentioned above, we know of a com-

mentary by lamblichusk another (not extant) by Heronask a

translation (extant) by Boethius, commentaries (extant in MS.)

by Asclepius Trallianus and Johannes Philoponus and another

(not extant) by Proclus : extracts in Arabic by Thabit-ibn-

Corra (A.D. 836—901) and a commentary by Camerarius of the

16th centuryk Nicomachus in fact inaugurates the final era of

Greek mathematics. From his time onwards, dpLdarjTc/cT] is the

favourite study, and geometry is neglected in its turn.

67. After a philosophical introduction, the first book of

Nicomachus proceeds (c. 8—^10) to the classification of numbers,

as even and odd (dprtot and 'irepiTTotf. Even numbers are

dpTLdfCL<i dpTLOL (2”), dpTLOTTepiTTOL {2 (2m + 1)}, and Tvepiaadp-

TLOL [2”'^^ (2m + 1)} i.e. they are either powers of 2 or 2 multi-

plied by an odd number or 2 multiplied by an even number,

which is itself a multiple of an odd number®. Odd numbers (c.

11—13) as either ‘prime and uncompounded’ (TrpwTot Kal davv-

Oeroi), ‘compounded’ (Bevrepot Kal avvOeroi) or ‘compounded

but prime to one another.’ The habit of dividing numbers into

1 Philopatris, 12.

2 Ed. Tennulius (very badly as

Nesselmann shows) at Arnheim, 1667.

The commentary of lamblichus forms

the 4th part of his treatise on the Py-

thagorean philosophy.

3 Mentioned by Eutocius (ad Archi-

med. de Sphaera et Cyl. ii.).

^ See Nesselmann, pp. 220—223.

® Nicomachus begins by saying that

every number is the half of the sum of

the preceding and succeeding numbers.

1, however, has no predecessor and is

half of 2 only. From this it is evident

how far the Greeks still were from the

conception of 0 as a number.

® This is an improvement on Euclid’s

definitions to Book vii. There dpridKis

dpTios is theproduct oftwo even numbers,

dpTtaKis Trepicraos of an even multiplied

by an odd number. Hence in ix. 34 he

has to confess that ‘numbers which are

not powers of 2 and which, when
divided by 2, give an even quotient,

are both apna/cts dpnoi and dpTiaKis

irepi-aaoi.' Nicomachus, as usual, gives

a table for finding his three species.
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3 groups {ethri) has here led Nicoraachus into great confusion of

thought. His second class contains all the third : his second

and third classes might very well contain even numbers, and

lastly his third class defines numbers by their relation to others,

whereas in c. 17 he says he has hitherto been considering

numbers in themselves. Chapters 14—16 contain the de-

finitions of perfect, excessive and defective numbers (reXeiot,

VTrepreketoty eXXiTret?). Nicomachus then proceeds to the classi-

fication of the relations in which numbers stand to other

numbers. Of inequality between two numbers, 5 kinds may be

distinguished (c. 18—23). These are

1. When the greater divided by the less, gives a whole

number as quotient. The greater is then called TroXXaTrXao-to?,

a ‘ multiple,’ the less viroiToXKairXdcrLo^, ‘ a submultiple.’

2. When the greater : the less :: m + 1 : m. The

greater is eTrifiopLo^ {superparticularis), the less v7re7np,6pto<;

(subsuperparticularis). Thus f is iiriTpcro^, J iinTeTapTo^ etc.

f is v7r67rlTpLTO<i, I vireTrLTerapTO'^ etc. But f is specially

named ypbi6\Lo<^^.

3. Greater : less :: ^ni + n : m + n. The greater is eTrt-

pepr]<^ {superpartiens), the less vireTrLpiepr)'^ {suhsuperpai'tiens).

As a general rule, the fractions here contemplated are of the

form
,
and in the nomenclature the denominator is notm +

1

mentioned. Thus

1 q- f is iiTL^Lpepr]^, superbipartiens,

1 + f is eTrLTpipepyj^i supertripartiens, etc.

But Nicomachus himself does not always use this nomenclature

and was evidently equal to finding names for a fraction of the

form . Thus 1 + # is iirLhlrp/.TO?, 1 -h f is iiriTpL-m + n o I ^ /

1 Here Nicomaclius refers to a

table of 10 rows, divided into 10

columns. The first horizontal row con-

tains the numbers 1 to 10 : the second

these numbers multiplied by 2 : the

third, multiplied by 3, etc. up to 10

times. It is, in fact, the earliest known

multiplication table. Every number

in a lower row is TroWairXaaios of the

corresponding number in the 1st row :

the numbers in successive rows (except

the 1st and 2nd) are related, so that

the lower rows are einixopLOL of the next

higher, the higher are vTreTnfxdpLoi of the

next lower. This table is referred to

also in the succeeding chapters.
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rerapro? and in the same way, 1 + f etc. might have been

called iirLTpiTregnTTo^y etc.

4. Greater : less :: mn-\-l : n. The greater is iroXka-

TrXao-LeTTLjjLopto^;, the less vTro'rrdXkaTrXaorLe'TTLpbopio^.

is Bi7rXa(ne(j)r]piiorv<;, duplexpesquialter.

2i is SL7rXa(ne7rlTptTo<^, duplex sesquitertius.

SJ is Tpi7rXacri67rLT6TapTO(;, triplex sesquiquartus, etc.

5. Greater : less :: p {m 1) m : m + 1, where p is more

than 1. The nomenclature, so far as regards the whole

number, is the same as in class 4, and as regards the fraction,

the same as in class 3 (e.g. Bt7rXao-i67rtBLpi€pT]<} = 2^ etc.). An-

other table is here appended, showing how to find numbers

which shall be to one another in the foregoing ratios. There

is, in fact, little of mathematical value in the 1st book of

Nicomachus, but it is of some historical interest to observe how
complicated the Greek treatment of fractions still remained.

It should be remembered also that the nomenclature of Nico-

machus was translated into Latin, and became habitual in

Western Europe down to the introduction of the Arabian

arithmetic.

58 . The 2nd book begins with another table, showing how
to find series of eiripbopLOL, and various comments on this table

b

In c. 6, Nicomachus turns to the theory of polygonal numbers.

These he describes (c. 8—11) in precisely the same manner as

that which is attributed to Hypsicles by Diophantus [supra

p. 87), save that in Nicomachus the terms of the arithmetical

1 The table is thus constructed.

Write out a geometrical series begin-

ning from 1. Take the sum of each

pair of successive terms and set these

sums in a row below the 2nd and suc-

ceeding terms of the 1st, and continue

this process ad lib. E.g.

1 3 9 27 81 etc.

4 12 36 108 etc.

16 48 144 etc.

64 192 etc.

Here each column is a geometrical

series of which the radix is iiriTpcTos.

The first numbers of the rows form a

geometrical series of which the radix

is 4 (chaps. 3 and 4). J ^^gendre, in the

preface to his Theorie des Nombres, says

that this science becomes a sort of

passion with those who take it up

:

whereupon De Morgan remarks that

this is probably because the curious cha-

racter of the conclusions is not lessened

by the demonstration. The explana-

tion is peculiarly appropriate to Nico-

macheaii dpLdp.7]TLKrj, with its unsug-

gestive symbolism.



92 GREEK THEORY OF NUMBERS. AntJimetica.

series by which the polygonal numbers are found are all called

gnomons. This word therefore, which in Euclid means the

difference between one square and the next, means in Nico-

machus the difference between ary polygonal number and the

next of the same order. Then follow (c. 12) some analogies

between arithmetical and geometrical facts: e.g. as every

square can be divided by a diagonal into two triangles, so every

square number is the sum of two triangular : every square

number plus a triangular makes a pentagonal etc. Then, as

usual, a table is given of the polygonal numbers of each order,

with remarks thereon. Chaps. 13—17 deal with solid numbers.

The sum of a series of polygonal numbers from 1 upwards is a

pyramid, triangular or square etc. according to the order of the

polygonal numbers. The highest of such polygonal numbers is

the base, 1 is the apex, of each such pyramid. If 1 be omitted,

the pyramid is truncated (KoXovpos) : if 1 and the next poly-

gonal number be omitted, the pyramid is St/coXoupo? and so on.

Besides pyramids, there are cubes, beams (SoKiSes;), tiles {ttXlv-

wedges {(T(\)r]VLcrKOL), spheres andi parallelepipeds. Wedges

are numbers of the form (mxnx p), where all 3 dimensions are

different^ : tiles are {m — n) : beams (or columns, aTrfXihe<^ in

lamblichus) are (m + n). A number of the form m (m + 1)

is €r€pofi7]Kr]<; : m (m-\- n) is oblong {irpopurjKrj^;) if n>\\ a

parallelepiped is of the form (m + 1). The powers of 1, 5 and

6 always end in 1, 5 and 6 : the squares of these numbers may
therefore be called circular, their cubes spherical. In c. 18—20

square numbers and erepopLyKet^; (2, 6, 12 etc.) are set out in

parallel rows and attention is drawn to a number of curious

coincidences, thus exhibited : e.g. the differences between suc-

cessive sqnai^es form the series of odd, those between successive

eTGpopL7j/ceL<; the series of even, numbers : in the series of odd

numbers from 1, the first term is the first cube, the sum of the

^ 2nd and 3rd terms is the 2nd cube, the sum of the 4th 5th and

6th terms is the 3rd cube and so on.

59 . At this point (c. 21) Nicomachus turns to the dis-

^ Also called a-cpTjdaKOL ‘stakes’ or (c. 16). On the origin of this classifi-

j3(jJiJilcrK0L ‘altars. ’ All solid numbers cation of numbers, sec Dean Peacock in

of 3 unequal dimensions are scalene Ency. Metrop. i. pp. 422, 423.
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cussioii of proportion {dvaXoyiaL, fiecroTrjre^y, wHcli, he says, is

very necessary for “ natural science, music, spherical trigo-

nometry and planimetry and particularly for the study of the

ancient mathematicians.” He begins with a slovenly definition

:

‘'ratio (\0709) is the relation between two terms; proportion is

the composition of ratios I” When the same term is “on both

sides,” consequent (i^ttoXo^o?, comes) to the highest number,

antecedent (TrpoXoyo^, dux) to the least, the proportion is called

‘continued’ (crvvrjfifjiepTj). When the middle terms are different

from one another, the proportion is ‘disjunct’ (Sie^evyfjbevrjY.

He goes on to say that Pythagoras, Plato and Aristotle knew

only six kinds of proportion, viz. the arithmetical, geometrical

and harmonical, and “their three sub-contraries ^ which have no

names.” Later writers added four more. He then describes

(c. 23—25) the first three kinds, with a few remarks on each.

In a continued arithmetical proportion (a — h = h — c),he has

discovered a “ most splendid rule, which has escaped most

mathematicians,” viz. that ¥ ^ ac = (a — Idf — (b — c)^. In a

continued geometrical proportion (a : 6 :: 6 : c), he notices®

that a — h : h — c :: a : h, and that between 2 square numbers

there is one, between 2 cubes two geometrical means. In a

harmonic proportion (a : c : : a — h : 6 — c) he observes, among
other things, that {a-\- c)h = 2ac. In c. 27, he states that

between any two numbers, even or odd, three mean terms may
always be found, one arithmetical, one geometrical and one

^ Properly (i.e. originally) avaXoyla

means geometrical proportion : /aeadrijs

any other kind. But this distinction

was practically lost by Nicomachus’

time. See an excellent note in Nessel-

mann, pp. 210—212.
2 Euclid V. Deff. 3 and 8 is more

precise. lamblichus himself corrects

Nicomachus on this point.

3 Euclid’s name for a continued pro-

portion is dpid/xol e^Tjs dvdXoyov: Theon’s

is (Twexvs dvaXoyia. Theon’s name for

an ordinary proportion of 4 terms is

bi'ypgixivT}, It is also called dcexv^-

^ lamblichus {In Nicom. pp. 141—2)

says that the first three only were known
to Pythagoras, the second three were in-

vented by Eudoxus. The remaining

four he attributes (p. 163) to the Pytha-

goreans, Temnonides and Euphranor.

All ten are treated in the Euclidean

manner by Pappus, Math. Coll. iii. (ed.

Hultsch) pp. 85 sqq.

® A similar rule is true of any geo-

metrical proportion, not necessarily

continued. Euclid v. 17 and 19. The
next proposition mentioned in the text

is the Platonic theorem proved in

Euclid VIII. 11, 12.
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harmonicaP. He aext (c. 28) states the remaining seven kinds

of proportion viz.

(
1
)

a : c : : h — c : a - 6 (e.g. 6, 5, 3).

(
2) h : c :: h - c : a — h (e.g. 5, 4, 2).

(3)
a : h :: h — c : a — h (e.g. 6, 4, I).

(4) a : c ::: a — c : h — c (e.g. 9, 8, 6).

(5 ) a : c :: a — c : a — h (e.g. 9, 7, 6).

(6 ) b : c ::: a — c : 6 — c (e.g. 7, 6, 4).

(7) h:c :: a — c : a — h (e.g. 8, 5, 3).

We have previously been told (c. 22) that the number of

proportions was expressly raised to 10, because that was held

by the Pythagoreans to be the most perfect number. It is

rather surprising, therefore, to find that Nicomachus has yet

another in reserve, the musical, which he calls reXeioTarT}, the

“ most perfect, comprehending 8 dimensions and embracing all

the other proportions.” This, as was above stated (p. 70), is of

the form a :

^ ^
: h, the 2nd term being the arith-

2 a+ 6
®

metical, and the 3rd the harmonical, mean between the two

extremes.

60 . The foregoing summary is sufficient to show that, in

the interval of 400 years or so between Euclid and Nicomachus,

something had been done, though we know not by whom, for

the theory of numbers. In plane numbers, Euclid knows, or at

least uses, only the square and the gnomon : in solids, only the

cube : in proportions, only the geometrical. Almost the whole

learning of polygonal numbers and solids and proportions was

elaborated after his time, and before that of Nicomachus, for it

is evident that the Introductio contains little that is original.

In the meanwhile, again, mathematics had passed from the

study of the philosopher to the lecture-room of the under-

graduate. We have no more the grave and orderly proposition,

with its deductive proof. Nicomachus writes a continuous

1 He omits, to mention that the two in geometrical proportion, viz.

given numbers multiplied must produce

a square, else the geometrical mean
will be irrational. He also fails to

notice that the three means will be Nesselmann, p. 215.

rt + & - 2ah
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narrative, with some attempt at rhetoric, with many inter-

spersed allusions to philosophy and history. But more im-

portant than any other change is this, that the dpLOfiyrcKr/ of

Nicomachus is inductive, not deductive. It retains from the old

geometrical style only its nomenclature. Its sole business is

classification, and all its classes are derived from, and are

exhibited in, actual numbers. But since arithmetical inductions

are necessarily incomplete, a general proposition, though prima

facie true, cannot be strictly proved save by means of an

universal symbolism. Now though geometry was competent to

provide this to a certain extent, yet it was useless for precisely

those propositions in which Nicomachus takes most interest.

The Euclidean symbolism would not show, for instance, that all

the powers of 5 end in 5 or that the square numbers are the

sums of the series of odd numbers. What was wanted, was a

symbolism similar to the ordinary numerical kind, and thus

inductive dpidfirjTLKT] led the way to algebra.

61 . Contemporary with, or not much later than Nico-

machus, was Theon of Smyrna, author of a treatise on the

mathematical rules necessary for the study of Plato The date

of this author may he roughly determined by the fact that,

in citing all the writers on music since Pythagoras, he stops at

Thrasyllus (the friend of Tiberius) and does not quote the

dppovLKT] of Ptolemy. Ptolemy himself also quotes from a

certain Theon four observations of Mercury and Venus taken in

the years A.D. 139—142. There seems no reason to doubt that

this was Theon Smyrnaeus, whose Expositio is largely devoted

to astronomy. The book itself^ contains almost exactly the same

matter as Nicomachus (without the chapters on proportion),

but is very ill-arranged, so that rules are anticipated, one class

of numbers is treated in two or three widely separate chapters.

1 Cited as ^Expositio rerum matlie-

maticarum ad legendum Platonem uti-

lium.' Ed. Hiller, Leipzig, 1878.

2 The Expositio, as we have it, was
formerly thought to be only a fragment.

We have it in two books, one on arith-

metic, the other on astronomy. It was
supposed that three more were missing.

on geometry, stereometry and the

music of the spheres. Cantor and the

most recent editor, Hiller, are of opin-

ion, however, that we have the entire

work. See Cantor Vorles. p. 367.

Nesselmann p. 231 (quoting Bouil-

laud).
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the same facts are many times repeated \ It contains, however,

two novelties, which may be thus stated. (1) Every square^ or

every square minus 1, is divisible by 3 or 4 or both : if the

square is divisible only by 3, then minus 1, it is divisible by 4

:

and if it is divisible only by 4, then minus 1, it is divisible by

3 : if it is not divisible by 3 or 4, then minus 1 it is divisible by

both 3 and 4. (2) Theon introduces a new kind of numbers, called

diameters {^lajierpiKoi c. 31). These are numbers whose squares

are of the form 2?i^ + 1. They are obtained in the following way.

If 1 and 1 be the side and diameter of a square, then 1 + 1 is the

side of the next, and 3 or 2 + 1 is its diameter : 2 + 3 is the next

side, 4 + 3 is its diameter : 5 + 7 is the next side, 10 + 7 is its

diameter etc., each successive side being the sum of the last

side + last diameter, and each successive diameter being twice

the last side + last diameter. Each diameter is the whole

number nearest to the root of twice the square of the corre-

sponding side®. It is curious that the ratios between these

diameters and the corresponding sides are represented by the

successive convergents of the continued fraction

1
1111

^*
2 + 2 + 2 + 2

+®^°-

which represents the approximate value of \/2. Theon, how-

ever, says nothing either of \/2 or of continued fractions

^

62 . At some unknown date, certainly before lamblichus,

(i.e. before A.D. 300) lived one Thymaridas, the inventor of

a certain proposition, known as his iTravOrj/ma or ‘ after-blossom.’

A brief and obscure account of this is preserved by lamblichus®.

1 See Nesselmann, pp. 226—227.

2 C. 20. The same rule is given by

lamblichus, Bi Nicom. p. 126.

3 These diameters are the prjTal did-

fierpoi, ‘rational diameters’ to which

Plato seems to allude in the famous

passage about the ‘nuptial number’.

Rep. VIII. 246.

4 See Cantor Vorles. pp. 229, 272

—

274, 369—370. Nesselmann, pp. 229,

230 observes that Theon has here stated

a mode of finding all the solutions, in

rational numbers, to two indeterminate

quadratic equations, viz. 2t'^ + l=u^

and 2x^ -l=yK He does not, indeed,

suppose that Theon knew this, but the

fact is interesting as bearing on the

work of Diophantus.

5

In Nicom. p. 88. Cantor, in his

Math. Beitrdge, pp. 97 and 380, iden-

tified this Thymaridas with him of

Tarentum, who is said by lamblichus

to have been a pupil of Pythagoras.

In the Vorles. (Pref. vii.) he abandons
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and has been brilliantly explained by Nesselmann (pp. 232—

-

236). The proposition, which is curiously worded, is as follows:

“ When any defined or undefined {oopccrfiivoi, rf dopiaroL) quantities

amount to a given sum and the sum of one of them plus every

other (in pairs) is given, the sum of these pairs minus the

first-given sum is (if there be 3 quantities) equal to the quantity

which was added to all the rest (in the pairs) : or (if there be 4

quantities) to J of it
:

(if 5) to J :
(if 6) to J

” etc. That is,

if 8, be given, and x^-\-x^ = and x^-\-x^ = 5^,

then iPj = If quantities x^-\- x^-\- x^+x^ — 8 ha

given, and x^-\-x^ = 5^,
x^-\- x^ = Xj^-{- x^^ — be given, then

^2 + 5— generally, if x^-^ x^ + x^+.., x^ — 8,

and x^+x^ = s^, x^-\- x^
=

. .x^ \-x^= then

^ _Si + S2+ + s»-.-'S

What is chiefly of importance in this proposition ‘ is the use

of the word dopear for an “ unknown quantity.” It does not,

indeed, appear whether Thymaridas had or had not a corre-

sponding symbol, but at least he has here stated an algebraical

theorem and used an algebraical expression. He has gone

beyond Nicomachus and nearly approached Diophantus.

63. The avvayayyi], or Mathematical Collections, of Pappus
the Alexandrian must have been written about A.D. 300.

Probably the first two books were arithmetical, since a fragment

of the 2nd Book contains an account of the tetrads of Apol-

lonius already described (supra, p. 62) and the remaining eight

deal almost entirely with geometry and mechanics. lamblichus,

who has been so often quoted in these pages, is a little later.

He was born at Chalcis in Coele-Syria and may have been alive

this supposition. Two other facts

about Thymaridas are mentioned by
lamblichus, (1) that he called unity

the ‘terminating quantity’ {rrepaivovaa

TToaoTrjs), and (2) that he called prime

numbers evdvypafxfjLLKoL, because they

cannot form plane figures.

^ A very similar proposition appears

G. G. M.

in Strophe 29 of the Algebra of Aryab-

hatta (ed. L. Rodet, pp. 14, 15, 38, 39

in Jowmal Asiatique for 1879). Cantor

{Varies, pp. 529—530) maintains that

the Indian (who was born a.d. 476)

has purposely disguised the epanthem,

in order to conceal his plagiarism.

7
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as late as A.D. 360 \ It has been already stated {supra, p. 89)

that his commentary on Nicomachus forms the 4th Book of his

treatise on Pythagorean philosophy, the greater part of which

is still extant. In this commentary lamblichus includes some

new matter, most of which is unimportant and need not be here

quoted^. One very singular statement, however, should not be

omitted. lamblichus says that the Pythagoreans called 10 ‘the

unit of the second course,’ 100 ‘the unit of the third course,’

1000 of the fourth and so on^ Upon this he founds the

following proposition : “If the units of any three consecutive

numbers, whereof the highest is divisible by 3, be added to-

gether and the units (i.e. digits) of their sum be added together

again and so on, the final sum will be 6.” E.g. 7 + 8 -f 9 = 24

and 2 4- 4 = 6 : 997 + 998 + 999 = 2994 : 2 + 94-9 + 4 = 24,

2 4 4 = 6. It will at once be seen that this was, for a Greek, a

very difficult and remarkable discovery, and it tends very much
to confirm the suspicion that the octads and tetrads of Archi-

medes and Apollonius were in fact accompanied by a symbolism

which, if applied to tens, hundreds etc., would closely have

resembled the Arabic numeral system.

64 . The extracts given, in previous pages, from Nicomachus

and Thymaridas will have led the reader to expect that algebra

is not far distant. This expectation becomes the more lively,

when we find that about this time problems leading to

equations were a common form of puzzle. Between 50 and 60

riddles of this kind are preserved in the Palatine Codex of Greek

epigrams (usually called the Palatine Anthology) and else-

where. At least 30 of these are attributed to one Metrodorus,

of the time of the Emperor Constantine (a.d. 306—337) ^

1 The Emperor Julian (a.d. 361—363)

is supposed to have corresponded with

lamblichus, but the extant letters are

of doubtful authenticity.

2 SeeNesselmann, pp. 237-242. Can-

{vo-7r\rj^,
‘ start ’) 1 . 2 . 3 . 4 .

[vvo’cra, ‘ goal ’) 1 . 2 . 3 . 4

The next course begins at 10 and goes

on to 100 and back and so on. lambli-

chus makes great use of this figure.

tor Varies. 390— 392.

^ [xovas devTepwbovixivT}, TpLCtidov/xivr],

&c. The name was suggested by a

singular fancy of arranging numbers

in a kind of race-course
;
thus

:

5 . 6 . 7 . 8 . 9 _ . , .

6 . 6 . 7 . 8 . 9 •

^ Jacobs, Comm, in Gr. Anthol. Pt.

XIII. p. 917.
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A few of them are older, though perhaps their metrical form is

of this date : many, no doubt, are much later, for the anthology

was not collected till the lOth century\ One of them, at-

tributed to Euclid^, is to this effect. A mule and a donkey

were walking along laden with corn. The mule says to the

donkey, “If you gave me one measure I should carry twice

as much as you : if I gave you one, we should both carry equal

burdens. Tell me their burdens, 0 most learned master of

geometry.” It will be allowed that this problem, if authentic,

was not beyond Euclid, and the appeal to geometry smacks

of antiquity. Another and a far more difficult puzzle is the

famous ‘ cattle-problem ’ (irpopXTjfjia ^oelkov) which Archimedes

is said to have propounded to the Alexandrian mathematicians®.

It is to the following effect. The sun had a herd of bulls and

cows, of different colours. (1) Of Bulls, the white (W) were,

in number, (J -|-|^) of the blue (B) and yellow (F) : the B were

(i + i) of the F and piebald (P) : the P were (|- + f) of TF and

F. (2) (9/* Cows, which had the same colours, {w, b, y, p),

^ = a + i) {B + h): 6=(i + i)(P + ^): (1 + f) {Y +y)-.

y = (i +
i) (IF + w). Find the number of bulls and cowsk

This is a very difficult problem, leading to excessively high

numbers, and may very well have been invented by Archi-

medes. The problems of Metrodorus are shorter. One of them
is of a kind still very familiar to schoolboys. It runs (Jacobs,

XIV. no. 130) :
“ Of four pipes, one fills the cistern in one day,

the next in two days, the third in three days, the fourth in four

days: if all run together, how soon will they fill the cistern?”

There are several more of the same pattern. Another (Jacobs

1 See art. Planudes in Smith’s Die.

of Biogr. Most of the algebraical epi-

grams are in Pt. xiv. of Jacobs’ Antho-

logy, but a few more are in the Appen-

dix (e. g. Nos. 19, 25, 26). Those

attributed to Metrodorus are in xiv.

116—146. See Nesselmann, pp. 477

sqq. Cantor Varies, pp. 393—4.

2 Jacobs’ Appendix, No. 26.

3 Discovered and printed by Lessing,

Zur GescTi. der Lit. i. pp. 421—446.

Nesselmann, who gives a translation

and discusses it exhaustively (pp. 481

—

491), stoutly denies its authenticity.

Heiberg {Quaest. Archim. p. 26) is

inclined to admit it. It is not in

Jacobs.

^ Solution in Nesselmann, pp. 484

—

485. Some later hand has added some

further difficulties : W+B a. square-

number, P+Y is a triangular. On
this, see also Nesselmann’s comments.

7—2
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XIV. 127) is : “Demochares has lived ith of bis life as a boy:

ith as a young man
;
|rd as a man, and 13 years as an old man.

How old is he ?
” and there are more of this sorth Another,

not by Metrodorus
(
Jacobs, xiv. 49) is :

‘ Make me a crown of

gold and copper and tin and iron, weighing 60 minae. Copper

and gold shall be frds of it
:
gold and tin Jths

:
gold and iron

fths. How much gold, copper, tin and iron are in the 60 minae ?
’

This is a problem on the epanthem of Thymaridas. None of

these problems, of course, lead to more than simple equations,

in which a line would be as good a symbol for the unknown
quantity as any other. But they are all arithmetical pro-

blems requiring analytical treatment, and they all involve the

consideration of an unknown quantity, for which some quasi-

arithmetical symbol would be most convenient. They became

especially popular just about the time of Diophantus*'^, and they

are therefore, as will be seen presently, of some historical

importance.

65 - Contemporary with lamblichus, or perhaps rather

earlier, lived Diophantus of Alexandria, the last and one of the

most fruitful of the great Greek mathematicians. His date

indeed can hardly be determined exactly. An arithmetical

epigram on his age is attributed to Metrodorus. From this, it

would appear that he died at the age of 84 years, some time

1 One of this kind is on the life of

Diophantus (Jacobs xiv. 126.) On
these problems, Dean Peacock (art.

Arithmetic in Ency. Metrop. Pure Sci.

I. §§ 244—248) remarks that many of

them may have been solved (as similar

problems were by the Indians, Arabians

and early Italians) by the rule of ‘falsa

positio' or ‘regula duorum falsorum'

:

which dispensed with any algebraical

symbol. The simple
‘
falsa positio' was

the assigning of an assumed value to

the unknown quantity: which value, if

wrong, could be corrected, in effect, by

a ‘ rule of three ’ sum (as in the modern

rules for Interest, Discount or Present

Worth). This was used by the Egyptian

Ahmes andby the IndianBhaskara(born

A.D. 1114, author of the Lilavati, form-

ing part of the larger work Siddhdnta-

giromani). By the ‘regula duorumfal-

sorum’ (Arabic el Cataym, i.e. ‘the two

errors’) two false assumptions were

taken and x was found from their

difference. The simple ‘falsa positio ’

is called in the Lilavati ‘Ishta carman',

or ‘operation withan assumed number’.

Both are continually used by Luca

Pacioli and Tartaglia. See Dean Pea-

cock’s art. supra cit.: Hankel. p. 259,

Cantor Varies, pp. 524, 628—9. Also

below p. 116 n.

2 An epigram is actually included in

Dioph. Arithm. (v. 33) and the problem

solved. The epigram is printed in

Jacobs, App. no. 19.
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before A.U. 830 or thereabouts. But he is not quoted by any

writer before the younger Theon^ who was working A.D. 365

—

372 and later. Theon’s daughter, the famous Hypatia (died

A.D. 415) is said by Suidas (s. v.) to have written a commentary

on Diophantus. Abulpharagius, a Syrian historian of the 13th

century, says positively that Diophantus was a contemporary of

Julian the Apostg,te, who was emperor A.D. 361—363. If the

date of Metrodorus were certain, and the epigrams ascribed

to him were undoubtedly authentic, the epigram above cited

would be conclusive. But it is not so, and Abulpharagius may be

right I It would suit either testimony if we assign Diophantus

to the first half of the 4th century, a time at which algebra cer-

tainly ought to have appeared, but he may have been much
earlier. Doubts were at one time felt whether his name might

not be Diophantes, for the passages in which he is mentioned,

generally have the genitive ^lo^avrov, which would suit either

nominative^ but Theon and Abulpharagius both call him Dio-

phantos, and this may be taken to be his real name.

Only one work by Diophantus is cited, viz. the ’Apt^-

juLTjTLKd. Two, however, are extant, viz. an "ApLO/jbrjTiKd and a

pamphlet on polygonal numbers, both mutilated. Diophantus

himself, in the opening words of his 'ApL6fjL7]Ti/cd, announces it

as a work in 13 books: yet all the existing copies (save one)

have it in 6 books, and the one exception (Vatican MSS. no.

200) has it in 7 k Yet it is evident that these 6 or 7 books are

1 Comm, on the Almagest. Ed.

Halma. i. 111. The 6th definition

of Diophantus is there quoted verbatim.

2 On the question of Diophantus’

date, see an exhaustive discussion in

Nessehnann, pp. 243—256. Here, how-

ever, Hypsicles, whom Diophantus

quotes,, is assigned to far too late a

date, and Diophantus is (probably

wrongly) identified with him who, ac-

cording to Suidas, was teacher of Li-

banius the sophist [cir. a.d. 314—400).

Cantor Varies. Pref. p. vii cites Tan-

nery, in Bulletin de Sci. Math, et

Astron., but I cannot find the article.

2 One MS. of Suidas, {s.v. Hypatia)

has Aco^auTTjv, but others have Ai6-

(pavTov. Nesselmann, indeed (pp. 244,

247—249), thinks all are wrong and

that the true reading of the passage

(Kiister’s) is vTrofivgga eis Aiocpavrov

darpovoiiiKov Kavbva. This would be

the name of a commentary by Hypatia

on the astronomical tables of some other

Diophantus.

4 The known MSS. of Diophantus

are enumerated by Nesselmann, p. 256

n. They are three Vatican (nos. 191,

200 and 304) one at Paris, one in the

Palatine library (at Heidelberg). The
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not a reasonable, and therefore probably not the original,

division. Some propositions contained in the 2nd Book (1—

5

and 18, 19) clearly belong to the 1st, others, as clearly ought to

belong to the 8rd (especially the last two, 35 and 36). Similar

suspicions are aroused in other books. Evidence of mutilation

is afforded also by many propositions (e.g. ii. 19 and several of

the 5th Book) which are not proved at all\ Two subjects,

which Diophantus must have treated, are entirely omitted, viz.

the solutions of determinate quadratic and of indeterminate

simple equations. On the other hand, the last books of our

copies are pretty clearly the limit of Diophantus’ learning. For

all these reasons, Nesselmann^ comes to the conclusion that the

6 or 7 books of the ^ApiO/jLrjTLKa, as we have them, do sub-

stantially represent the original, minus the two omitted subjects:

that the omitted subjects were treated between the 1st and 2nd

Books of our editions, and that the mutilation took place before

the date of the earliest MS. {i.e. before the 13th century).

A further question arises, whether the fragment on polygonal

numbers ever formed part of the 'ApLdfjLrjTLKa or not. Nessel-

mann thinks it did : Hankel and Cantor hold that it did not.

It can hardly be doubted that the latter are right. The "Api6-

pLTjTLKd is purely algebraical and analytic (with the single

exception of V. 13): the fragment on polygonal numbers is

purely geometrical and synthetic. A similar question arises as

to a work called HopLapbara (? ‘Corollaries’) which Diophantus

quotes in at least three places (v. 3, 5 and 19) : but as this is lost,

it is not worth while in the present place to consider what it may

extant works of Diophantus were pub-

lished with a commentary by Bachet

de Meziriac (Paris, 1621) : further notes

were afterwards added by Fermat

(Toulouse, 1670). A German transla-

tion was published by 0. Schulz (Berlin,

1822). A Latin paraphrase by Xylan-

der (Holzmann)Basle,1571 ,first brought

Diophantus into general notice, though

many scholars knew of his existence

before.

1 A very striking instance occurs in

V. 22, where the solution has nothing to

do with the problem to which it is

attached. Nesselmann (pp. 410—413)

suggests that here the problem properly

follows on V. 21 : its solution is lost

:

the two next problems with their solu-

tions are lost : the next problem is lost,

but its solution remains,

2 See esp. pp. 265 sqq. Cantor

Vorles. pp. 397— 398. Hankel, pp.

157—158. Nesselmann quotes, in sup-

port of his views (p. 272) Colebrooke’s

Algebra of the Hindus, note m, p. lxi.
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have contained, and how it would have fitted into the extant

works \

66 . Of these latter, the fragment of Polygonal numbers

may be first dismissed, both because it is very short and

because, also, it is in the antique geometrical style. The only

difference, here, between Diophantus and his predecessors is

that he treats of polygonal numbers generally, without specially

handling the different classes of them. The book, as we have

it, is divided into 10 propositions, which is an excessive number

for the actual matter contained^. It begins by stating (as well-

known) that all numbers above 3 are polygons, containing as

many angles as units : and that the side of each such polygon is

2. Then follows a statement of the purpose of the work to this

effect :
“ As a square number is known to be the product of a

number multiplied by itself, so every polygonal number, multi-

plied by one number and added to another, both of which

depend upon the number of its angles, produces a square

number. I shall prove this, and shall show also how from a

given side to find its pollygon and conversely. Some auxiliary

propositions must first \ be proved.” Then follow some pro-

positions on arithmetical progression, proved geometrically.

Their result may be stateu algebraically thus : Prop, ii^ If a,

a + 6, a + 26 be three terms of an A. P. then 8 (a -1- 26) (a -h 6)

-\-a^ — [{a + 2h) + 2 (a + 6)j^ Prop. ill. If a,a-\-b,a + 2h etc.

be an A. P. the difference between the 1st term and the 7?/th is

{n — l)h. Props. IV. V. Summation of an A. P. of n terms,

proved first where n is even, secondly where n is odd. The
following propositions introduce the' more familiar progressions,

in which the first term is 1. Thus vi.^ if >8 be the sum of n

terms of the series I, I + 6, 1+26 etc. then 86>Sf + (6 — 2/
= [6 {2n — 1) + 2]^ Prop. vii. contains the geometrical proof

that {2n — '\y —\h (2n—Vjf. The most important is Vlil.

:

in the series 1, 1+6, 1+26 etc. the sum of n terms is a

1 The curious may consult Nessel- mary of Props, viii. and ix. in Cantor

mann, pp. 269—270, and his 10th Varies, p. 414.

Chapter, pp. 437 sqq. 3 Proof given in full by Nesselmann,
2 See a very full abstract in Nessel- pp. 471—472.

mann, ch. xi. pp. 462—476. A sum- Proof in Nesselmann, pp. 473—4.
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polygon, containing 6 + 2 angles, and its side is the sum of the

preceding (n — 1) terms (compare Hypsicles, whom Diophantus

here quotes) \ Thence follows a “ definition ” of a polygonal

number to this effect :
“ Every polygonal number of n angles,

multiplied by 8 (7^ — 2) and added to {n — 4)^, is a square

number This with the ixth Prop., in fact, completes the

promise of the introduction, but a xth proposition is added

“To find in how many orders a given number is polygonaP.”

Only a fragment of this remains, from which it is impossible to

discern how Diophantus intended to complete his proof. All

these propositions are given in the Euclidean manner, with an

enunciation, a linear symbolism, and a synthetic proof ending

oiT€p ehei hel^ai (q. e. d.). But it is to be remembered that

lines, with Diophantus, are symbols for numbers only (as in

Euclid vii>—ix), and not for magnitudes (as in Euclid ll. or

X.) Nevertheless, he adopts for arithmetical purposes pro-

positions proved for geometrical by Euclid (e.g. TI. 3, 4 and 8)

and from this it is evident that the arithmetical uses of Euclid

were known to the later Greek mathematicians^

^ The proof is given in full by

Nesselmann, pp. 474—476.

2 If P be the polygonal number,

8 (n - 2) P + (w - 4)2 = a square number.

This proposition was known of tri-

angular numbers as early as Plutarch

{Plat. Quaest. v. 2, 4), and is so repeated

by lamblichus. The general proof is

probably Diophantus’ own. Bachet

remarks that the converse is not ne-

cessarily true. If 8 (w - 2) P + {71 - 4)2

is a square, it does not follow that P
is a polygon of the wth order, unless

n is 3 or 4. E.g. If n = 5, 24P -f 1

is a square, if P= 2: but 2 is not a

pentagonal number. See Nesselmann,

p. 467.

3 E.g. 36 has 3, 4, 13 or 36 angles:

225 has 4, 8, 24, 76 or 225 angles, etc.

Nesselmann. pp. 468—470.

^ The proof of the 1st proposition is

short enough to be inserted here. It

runs thus:——

1

^ ^

E A B D G
“ Three numbers, AB, BG, BD have a

constant difference
{
= GD). It is to

be proved that ^ AB . BG +BB^— q,

square of which the side is AB + 2BG,

SineeAB^BG + GB, SAB . BG= 8BG'^

+ 8BG.GB, and 4AB .BG = 4BG^
+4BG.GB. But(Eucl.n.8)4PG.6*D

+ PD2_^ j52^ inquiry therefore is

how AB^+

4

AB.bg

+

4BG^ give a sum
which is a square number. Take

AE= BG. Then(Euclidii.3)4PX.XP

+ 4^P 2^ and 4BE .EA + BA^
=^{BE + EAf. But {BE +EA)=AB
A^AE =AB + 2BG, Q. E. n.” It will

be seen that this proof is wholly Eucli-

dean, but omits many steps which

Euclid would certainly have inserted,

and that it uses Euclid ii. 3 and 8 for

arithmetical purposes.
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67 . The Arithmetica is a work of infinitely greater im-

portance. It is a treatise on algebra, and, if not the first that

ever was written, is by far the earliest now extant. It is devoted

to the solution of equations, which Diophantus expresses with

algebraical symbols and treats always analytically. But as Dio-

phantus does not claim for himself the credit of inventing either

the symbols which he uses or his method of proof, a short

recapitulation should be here inserted to account, as far as

possible, for both inventions.

The ancient geometers knew two modes of proof, which

they called synthetic and analytic^. With the former, a pro-

position is proved directly by steps advancing from the known

to the unknown. With the latter (of which the reductio ad

absurdum is a particular kind), a proposition to be proved is

assumed to be true or untrue, and the assumption is shown

to be consistent or inconsistent with some simpler facts already

known, or is shown to be^ upon certain conditions. Algebraic

proof is of this latter, i\iQcmgdytical, kind. The invention of

this kind of proof is expressly attributed to Plato I We have

already seen {supra, p. 18), that calculation wdth an unknown

quantity (called Hau or ‘ heap ’) was practised by the Egyptians

in very remote antiquity, and that some conveotional signs

at least for addition and subtraction were then used. So useful

an art can hardly have disappeared entirely from the later

Egyptian civilization. Aristotle first, so far as we know,

employed letters of the alphabet to indicate unknown magni-

tudes, though not for purposes of calculationI But this

^ Euclid XIII. 1, (Scliol.) Pappus, Bk.

VII. Preface. Ed. Hultsch, p. 634.

Proclus, ed. Friedlein, pp. 211—212.

Todhunter’s Euclid, Notes, pp. 309

sqq.

2 Proclus, loc. cit. and Diog. Laert.

III. 24.

^ See, for example. Physics, vii. viii.

passim: but esp. vii. 5 (pp. 249—250

of the Berlin ed.), where it is stated:

“If A be the mover, B the moved
thing, r the distance and A the time

of the motion, then A will move ^

twice the distance P in the time A or

the whole distance P in half the time

A,” etc. Poggendorf, Gesch. der Phy~

sik. p. 242, sees in this the germ of

the principle of virtual velocity. It

is evident also that Aristotle understood

the advantage of these alphabetic sym-

bols, for he explains {Anal. Post. i. 5,

p. 74 a 17) how much time and trouble

is saved by a general symbolism.
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suggestion could hardly be followed up because the alphabet,

soon after Aristotle’s time, came to be used for ordinary arith-

metical purposes. Euclid uses lines as symbols for magni-

tudes, including numbers, and though he solves quadratic

equations and performs other operations of universal arithmetic,

he uses always the synthetic mode of proof, and confines himself

strictly to geometrical conditions. He will not add a line to a

square, or divide a line by another line or name a particular

number. The limitations imposed upon universal arithmetic by

the linear symbolism were too great. Algebra could come only

from the practical calculator who was not hampered by such

difficulties. The first step seems to have been taken, not by a

Greek, but by the Egyptian Heron. Thus, in a proposition

now included in the Geometria (p. 101 in Hultsch’s edition)

but originally part of “another book” unknown. Heron does not

scruple to add an area to a circumference \ In modern symbols,

the proposition runs :
‘ If >Sf be the sum of the area (A), the

circumference ((7), and the diameter (H) of a circle, find the

diameter. The answer which he gives is d
yi54>S' + 841 - 29

11

The proof, which he does not give, is obviously as follows:

: (7 is 7rd : TT is Then /Sf= ^ + (tt + 1) d =

Multiply each term by 154 (=11 x 14). Then

1 21 + 638 + 841 = 154>Sf + 841 or (11 4- 29)" = 154 >Sf + 841,

from which Heron’s answer immediately follows. It cannot be

doubted that Heron could solve an impure quadratic equation

in a way which, but for the want of a symbolism, would be

simply algebraicaP. Two centuries or more afterwards, we find.

^ Compare Diopliantus, who, in his

5th Book, means by a “right-angled

triangle” three numbers such that

0,2 -f-
5^ = c^, adds its area to its side,

A

treats its side upon occasion as a cube,

etc, Hankel, p. 159. Of the great

Greek mathematicians, Archimedes

alone (in his CircuU Dimensio) ven-

tures to introduce actual numbers into

a geometrical discussion, and to divide

a line by another line. He finds the

value of TT and some other similar ratios

but does not himself pursue such inves-

tigations further and is not followed by

any other writer. Trigonometry was

used only for astronomical purposes

and did not form part of geometry at

all.

3 Cantor Varies, pp. 341—2.
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in the Semite Nicomachus, that the practical calculator has taken

to proving, by induction from numbers themselves, the theories

which hitherto had been proved deductively by the geo-

metrician. In the 2nd Book of Pappus, the Aristotelian use of

the alphabet appears again, but whether this was due to

Apollonius or his predecessor Archimedes cannot be discovered.

Pappus, at any rate, uses A for 20, B for 3, P for 4, Z for 2 and

T for an unknown number^. Thymaridas calls an unknown

number aopLcrro^, and proves an algebraical theorem. Problems

leading to simple equations become a common form of amuse-

ment; and finally, in Diophantus, the method of forming and

handling equations appears almost complete, accompanied by

an algebraical symbolism which was probably not new but

of which no trace has been found in previous writers. The
foregoing statement is sufficient to raise a very strong suspicion

that there are large gaps in the history of Greek dpLOfjbrjTLKi],

and that the later Greek mathematicians were not by any

means so futile as they are sometimes represented to be^

Nevertheless hardly any writers are quoted save those of whose

works large portions are still extant. It is therefore not an

improbable supposition that there were in Alexandria and

Pergamum and elsewhere, as in the English universities at the

present day, many mathematicians of great ability and in-

ventiveness, who did not write books at all but were content to

allow their knowledge to ooze out in lectures and private com-

munications^. What little evidence there is, and the absence of

more, alike suggest that these mathematicians were of Semitic

or Egyptian origin. On the other hand, it is still possible that

1 See Hultsch’s Ed. pp. 8 and 18.

Cantor Varies, pp. 298, 387.

2 ThusHankel (p. 157) says, “Of the

performances of the Greeks in arith-

metic our judgment may be stated

shortly thus ; they are, in form and
contents, unimportant, childish even

:

and yet they are not the first steps

which science takes, as yet ignorant

of her aim, tottering upon si '•ky

ground : they are the work of a people

which had once produced an Euclid,

an Archimedes, an Apollonius. It is

dotage without a future which wearies

us in these writings. In the midst of

this dreary waste appears suddenly a

man with youthful energy, Diophan-

tus.”

^ What, for instance, was the Logistic

of Magnus, and how did it assist Porus

and Philo of Gadara in those researches

which Eutocius {ad Arch. Cir. Dim.)

mentions, but which he could not

understand ?
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Diophantus actually invented the symbolism, and the rules which

first appear in his book but for which he claims no credit.

In any case, Diophantus must always be esteemed one of the

most brilliant of Greek mathematicians.

68. The Arithmetica begins with a prefatory letter to one

Dionysius, to whom Diophantus says, “ Knowing that you are

anxious to learn the solution of arithmetical problems, I have

tried to systematise (or ‘ state in a handy form’, opyavwaaii) the

method, beginning from the foundations of the matter. You
will think it hard before you get thoroughly acquainted with

it” etc. He then proceeds to definitions (11 altogether), in

which he does not (as an inventor would) use the imperatives,

ecTTft), KakeiaOa), ‘ let it be ‘ let it be called ’, etc. but the in-

dicatives, ecTTt, /caXeLraiy ‘ it is ‘ it is called ’, etc. With such

expressions he states the symbolism and the rules of algebraical

multiplication. He gives as a fact, without explanation, that ‘ a

negative term multiplied by a negative produces a positive

and (after recommending continual practice in the use of the

previous rules) he states shortly how to reduce an equation to

its simplest form. This is the evidence from which it is con-

cluded that Diophantus was not the inventor of the method

which he employs. The method itself may be shortly described

as follows.

Diophantus uses only one unknown, which he calls 6 dpL6fi6<;

or 6 dopiaro^ dpiOpLo^^. Its symbol is 9
' or 9

°' in the plural 99

or 99°S and, as in this last case, all inflexions may be appended

to the symbol as 9°^ 99°^* etc®. The square of the unknown 0̂

^ Def. 9, XecrJ/is eirl Xeixf/iu TroXXaTrXa-

aiaadeiaa iroiei vwap^iv’ Xe ti/'t s eirl v irap-

^Lv TTotet XeiipLv. This should properly be

translated, “A difference multiplied by

a difference makes an addition” etc.

Eor it is to be remembered that Bio-

phantus has no notion of a negative

term standing by itself or of subtracting

a greater term from a less. 8a: - 20 is

to him an absurdity unless x=2^ at

the least.

2 In the definition described aSTrXiJ^os

pLordSoju aXoyov.

2 This symbol s, as it appears in our

MSS. is always assumed to be the final

sigma, adopted here because it was the

final letter of dpidyts, and because also

it was the only Greek letter which had

not a numerical value. It must, how-

ever, be remembered (1) that it is only

cursive Greek which has a final sigma

and that the cursive form did not come
into use till the 8th or 9th century:

(2) that inflexions are appended to

Diophantus’ symbol s' (e.g. soO, ssoL

etc.) and that his other symbols (except
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is called Svyaiii^;, its symbol is 8" : is called /cvffo^ (symbol

K^)

:

is called Svva/JioSvva/jbL^, (symbol 88^) : is called

8vvaiji6Kv^o<; (symbol B/c^) : x^ is called kv^okv^o^ (symbol kkP)
:

but beyond this sixth power of the unknown Diophantus does

not go. These terms and symbols are not applied to the powers

of any number except the unknown. All known numbers are

called fjLovdBe^, (symbol /i®) and unity itself is always written

d or jjLLa. The coefficients are written after the symbols

(e.g. K = 20x : fjb° K = 20). The sign of subtraction is the

word Xe/i/ret [minus), its symbol is a truncated and inverted

(Def 9). The symbol of equality is c, the initial of fo-09 ,
i'croi^.

In a composite expression, the negative terms are placed after

all the positive, but there is no sign of addition save mere

Juxtaposition. Thus 88^0 8^s' fju^a ^ means

9^4 + 6^" + 1 - 4a;" - 12a; (lY. 29).

/p) are initial letters or syllables. The
objection (1) might be disposed of by

the fact that the Greeks had two uncial

sigmas C aud 5!, one of which might

have been used by Diophantus, but I

do not see my way to dismissing objec-

tion (2). It would be of great historical

importance if we could discover what

symbol Diophantus used, and of what
word the inflexions appended to the

symbol were supposed to form part.

Both word and symbol may be Egyp-
tian or Indian or Babylonian, and may
reveal an entirely unknown chapter in

the history of mathematics. Since,

however, the only distinct anticipa-

tions of Diophantus’ art are found in

Egypt in Ahmes and Heron (who also

is believed to have been an Egyptian)

I am inclined to look for the origin of

Diophantus’ symbols in some hieratic

characters. The Greek sign s' is in

form practically identical with two

hieratic signs (1) for 21̂ papyrus-roll, s'a,

a determinative of unknown force,

which, as it happens, is the last charac-

ter of the four with which Ahmes wrote

his liau (Eisenlohr i. p. 60, ii. pi. xi)

:

(2) for ‘sum-total’, tmt. The hieratic

signs differ slightly in form, and are

said to be derived from different hiero-

glyphic pictures (see Levi, Baccolta dei

Segni leratici, 1875, Plates 37 and 52)

:

but Dr Birch tells me that he thinks

the sign for a ‘sum-total’ is identical

with the papyrus-roll. So also I should

expect to find ^ in some hieratic cha-

racter. If I could prove these points,

I would recast this chapter.
1 Luca Pacioli (1491) uses p and m

for plus and minus : Tartaglia (1556)

uses 0 for plus: Vieta has -f and -,
also = (later co

)
for the sign of differ-

ence {Acn B): Oughtred first has x :

Harriot (1634) writes factors consecu-

tively without any sign of multiplica-

tion, Descartes uses 00 for equal.

Wallis turned this into = . See Nessel-

mann,p.305. Hallam, however, [Europ.

Lit. Pt. I. Ch. ix. s. 6) rightly ascribes

f and - to Stifel (1544) : and says

also that Xylander in his Diophantus

used II for =. As to -f and - see

De Morgan’s Arithmetical Books—

A

Bibliography—1847, pp. 19—20, andhis

art. in Trans. Camb. Philos. Soc. Vol. ix.
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unknown,

Fractions, of which the denominator is some power of the

e.g. \ etc. are described as dpiOfjboarov,
sc OC 00

Svi^afAoarov, Kv^oarov etc.: in the symbolism generally the

denominator is written above and after the numerator, 8^°^®

means -
, 7^^“ means : but if the numerator itself contains

X X

a fraction, then the whole word dpLOfjboarov etc. is written

etc.). If,

however, the numerator and denominator are composite ex-

pressions (also if they are very high numbers) Diophantus writes

the numerator first, then iv p^oplco or pLoplov, then the denomi-

g _
nator : e.g. r] puopiov 8^ a . a means -g

,
88^

€')( iv
X X

25600it;‘

before the numerator (as dpLOpboarov a =—
OC

pLopiM pK^, aice means
^221025 '

further details might be

added but they are not necessary for the present purpose.

Suffice it to say that Diophantus often writes a name in full

where a symbol would have ' served, that his symbols are only

abbreviations of the words (except ^), that inflexions are

appended to symbols (not to 8^, ya®) as if they were words,

and that he states, in grammatical sentences, the nature and

the result of each step in an operation b The following brief

1 Nesselmann (p. 302) divides alge-

braical styles into 3 classes:

() the Rhetorical, where no symbols

are used and every term and operation

is described in full. This is the style

of Thymaridas, lamblichus, all the Ara-

bian and Persian algebraists, and the

early Italians (e.g. Leon. Bonacci, of

the 13th, Regiomontanus and Luca

Pacioli of the 15th century.)

() the Syncopated, where abbrevia-

tions are used for the most common
words and operations, but in other

respects syntactical rules are observed.

This is the style of Diophantus and of

the later Europeans down to the middle

of the 17th century.

(c) the Symbolical, the modern style,/

where no words are used at all. Vietal

(1540—1603), who in time belongs
^

rather to the early Italians, uses a style

which is very nearly symbolical and

which was not generally adopted till

more than a century later. Before his

time, the Italians used R {res or radix),

Z {zensus), C [cubus), etc. for x, x^,

etc.: and Bachet and Fermat long after-

wards have N {niimerus), Q [quadratus],

etc. in the style of Diophantus. Vieta,

however, wrote A, Aq, Ac, Aqq etc.
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examples will illustrate all these points. The Prop. v. 8

concludes Kal jlveraL 6 rerpdycovo^ 3^ 3 X? Xel^jreL 99 k8 tao^

Svvdfjieo-L 3 99°‘^ K7] .
[A XS Kal ylverac 6 <x'‘9 etc. i.e. The

square 4<x^ + 36 — 24^r is equal to + 28^r + 34 and x is ^ .

In IV. 42 we read Xolttov Be rd viro rov nrpodTov Kal rporov

G-vvapL^OTepoL<; earao irevraKi^^. dX>C 6 vtto tgv irpwrov Kal

TpLTov iarl 3^ t/3 iv pi^oplcp B'^ a pu^iA Xelyjrei, 99 : i e. It remains

that the product of the first and third shall be 5 times their

sum. But their product is
12.;c"

^•‘* + 12 - 7^^
etc.

69 . It might have been expected that Diophantus, in

introducing a new method of inquiry, which consists mainly in

applying to a number, pro tern, unknown, the ordinary rules of

calculation, would have called his work XoyLo-TLKa. But it has

been already pointed out that the distinction between dpc6/arjTtK7]

and XoyLG-riKr), though originally perhaps only one of method,

soon became one of purpose. Logistic seeks oul}^ to find an

answer to a question about some particular numbers, while

dpidpipTLKr^ endeavours to define classes of numbers or to find

rules which are applicable to all numbers. Ostensibly, the

problems which Diophantus sets himself are generally of this

latter kind : e.g. Ii. 33. To find three numbers such that the

square of each plus the next number is a square : ill. 7. To

find three numbers such that their sum, and also the sum of

any two of them, shall be a square: iv. 22. ‘To find three

thus admitting of more than one un-

known (as Bq, Cqq etc.) and he also

introduced general coefficients as {niA

etc.) Harriot (1631) and Wallis (1685)

used to write aaa, etc. for a*, etc.

Descartes is sometimes said to have

introduced the numeral exponents

(which WaUis also uses) but Hallam

{loc, cit.) ascribes this to Michael Stifel

(1544). See Nesselmann, pp. 58, 296,

302 sqq. See also preceding note and

the preface to Wallis’s Algebra, 16^5.

The word zensus, from which the sym-

bol Z was derived, is a mis-spelling of

census, which is a bad Latin translation

of mul (i.e. ‘wealth’, or ‘possession’),

the Arabic name for the square of the

unknown. The Arabs called the un-

known shai, ‘thing’, translated in

Latin res, in Italian eosa, whence

algebra used to be called the .Cossic

art. See Colebrooke Algebra of the

Hindus, p. xiii. The same writer (p.

X. n) says that Robt. Eecorde (a.d. 1540)

firstused the sign= . The history of such

signs seems to require investigation.
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numbers in continued proportion, such that the difference be-

tween an}^ two of them is a square v. 17. ‘To divide a given

number into four parts, such that the sum of any three parts is

a square:’ VI. 14. ‘To find a right-angled triangle such that

its area minus either of the sides is a square.’ Problems of

this sort should be capable of general solutions : they are in-

tended to discover classes of numbers having a common pro-

perty, and are therefore rightly ascribed to dpLdjuirjTi/cT]. But

Diophantus does not, in fact, treat them generally. He is

satisfied with a solution which gives only one case or a few

cases. Usually he arrives at an equation to which he finds

only one particular solution. Even where the problem leads to

a quadratic equation, which may be solved for two positive

roots, he never gives more than one^. With a symbolism which

admitted of only one unknown quantity, he could not have

been expected to find a perfectly general solution, but he might

have done much more than he does^ It must be added also

that he will not accept a result which is either a negative or an

irrational quantity^ Equations which lead to such are ‘im-

possible’ or ‘absurd’ {dSwarov IV. 28, droirov, V. 2). On the

other hand, he does not by any means object to a fractional

result, and he is the first of the Greeks to whom a fraction was

a number and not a ratio.

70. Of the 6 Books of the ^ApidfjurjTLKa now extant, the

first, as has been said already, is mainly devoted to determinate

equations of the first degree, the remainder to indeterminate

equations of the second. The problems, however, which Dio-

phantus sets before the reader, do not as a rule lead immediately

^ In suela a case, says Nesselmann,

(p. 320) the Arabs and the earliest

Italians always gave both roots.

2 Hankel (p. 162) suggests that Dio-

phantus’ habit of only giving one solu-

tion, was a relic of the old geometrical

practice. It seems to me more probable

that algebra was originally the inven-

tion of practical men, who only wanted

one solution.

3 Hence, for instance to v. 30, ‘To

find two numbers such that their sum
and product shall = given numbers’

he adds (as a TTpoadiopLo-fits or ‘deter-

mination’) ‘If the square of their

sum be subtracted from twice the sum
of their squares, the remainder must

be a square’ {i.e. 2x^ + 2y^ ~ {x^ + 2xy

+ y^) must = a square number with a

rational root. }
Similarly v. 33. Nes-

selmann, p. 326.
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and easily to equations Vvith only one unknown. His art

therefore distinguishes itself in two separate departments, the

construction of equations and their solution. The second of

these may be treated here first.

In Def. XI. Hiophantus gives a rule for the solution of pure

equations in the following manner :

“ If a problem leads to an

equation containing the same powers of the unhnown (ethy] ra

avrd) on both sides but not with the same coefficients (/xr)

6/jLO7r\')]07jy, you must deduct like from like till only two equal

terms remain. But when on one side or both some terms are

negative (eVeXXetTret), you must add the negative terms to both

sides till all the terms are positive (ivvTrdpxei) and then deduct

as before stated^.'’ He then promises to give the method of

solving mixed or adfected quadratic equations^, but this rule

does not appear in our texts, and unfortunately Hiophantus,

though he often arrives at such equations, never goes through

the process of solving them. He merely states a root or says

that the equation is soluble (e.g. VI. 6 + 7^ = 7 whence x is

found = Y’: or vi. 8 “ 630^c^+78^=6, whence the root is rational^'').

But it is evident that he did not solve them empirically, for

where a root is irrational, he sometimes gives approximations to

it (e.g. V. 33). His method of solution seems to have differed

from ours only in this, that in an equation mx^+px = q, he first

multiplied the terms by m instead of dividing them®. Three

forms of adfected quadratics occur in Hiophantus viz. (1)

1 ttXtj^os is the ordinary Diophantid

expression for ‘coefficient’.

2 The addition of the negative terms

was called by the Arabs al-jehr (or ‘res-

titution’): the deduction was called al-

mukdbalah (‘comparison’). These two

nimes were used together for Algebra

until the end of the 16th century, when
the second was discarded. Nesselmann,

pp. 47 sqq. and 315. Comp, the 1st

chap, of Wallis’s Algebra.

^ varepov aoL bei^op.€V koI ttws
,
bvo

elbdiv l(J(j3v €vl KaraXettpd^vTwv, to toiovtov

XueTai.

^ Cf. Nesselmann, p. 318.

G. G. M.

® Nesselmann, p. 3l9. On p. 324

sqq. Nesselmann discusses from what

source Diophantus obtained his method

of solution. The ancients, from Eu-

clid’s time or earlier, could solve the

equations x^^px-q and px-x'^ — q^

geometrically considered. Thus x (ac +p)

= q would be in geometrical language

:

To produce a given straight line p to a

length p + ic, so that the rectangle be-

tween the whole line so produced and

the part produced i. e. cc (p + x) shall be

equal to a given figure q. The other

cases are equally easy to put geometri-

cally. All three are solved in Euclid

8
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mx^-\-^x = q (e.g. VI. 6), (2) mx^=px+q (e.g. IV. 45) and

(3) mx^ -{ q = px (e.g. vi. 24). One cubic equation (reducible

at once to x^ x — occurs, vi. 19. No example of

indeterminate simple equations occurs in the present text of

Diophantus. Some problems, leading to such, are contained in

the 1st Book (Nos. 14. 25—28), but Diophantus takes a short

way with these by assuming one of the required numbers and

so converts the equations into a determinate form. Indeter-

minate quadratics are confined to the case “ that one or two

(never more) functions of the unknown, of the form Ax^-^' Bx-\- C,

must be a rational square i^iaov rerpaycovo)). Hence we have to

do only with the equation Ax^ Bx+ C=y^ ov with two equa-

tions of the same form.” Let the single equation be considered

first. It assumes many forms according as one or another term

is wanting or is eliminated. These need not here be considered,

but it should be mentioned that the complete expression

Ax^ Bx G — if is deemed by Diophantus to be soluble^

only (1) when H is a positive square number ; in which case

a^ x^ + Bx + G = if \ he then takes y=^ax+m : (2) when (7 is a

positive square number : in which case he takes y — mx + G

:

VI. 28, 29 stated above (p. 84 n.). In

the figures

A G B

D EE
A B G

1) F E

To the line AB, a rectangle AE is to be

applied so that AE = q and BE is

similar to mc^ {ox BG : GE —m ; 1). If

AD = x, then BG= mx. AG=p^mx:
and AE =x{p±mx), so that the proof

of the geometrical proposition involves

the solution of the quadratic equa-

tions. This fact was first pointed out

by Montucla Hist. Math. i. p. 413,

Nesselmann quotes other suggestions

by Cossali and Bachet, but does not

decide for any. It should be stated

that Diophantus nowhere appeals to a

geometrical figure, whereas modern

algebraists (acc. to Hankel, p. 162)

down to the end of the 17th century

always added one as an illustration to

the solution of a quadratic equation.

I do not, however, find this in Harriot

or Wallis.

^ It must be remembered that Dio-

phantus does not avoid fractional solu-

tions for indeterminate equations, hence

the problems which in modern text-

books are called Diophantic (viz. to

find a solution in positive integers for

ax + hy — c) are wrongly named, since

Diophantus does not treat such equa-

tions nor does he solve for integers

those which he does treat. (Hankel,

p. 163.)
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(3) when — AG is a positive square number, a condition

which he uses only covertly. In such a case (e. g. iv. 33) he

takes y=mx. If beside Ax^ -f Bx -^ C =y^, another function of x

B^x\ (7j is to be made equal to another square number

y^ Diophantus calls the problem a double equation”

croTT]^^, SfjfXT] IcroTTjf;, L<jcocn<;). He seems unable to solve

these simultaneous equations unless A and Aj^ are the same

square number, but if x^ is wanting in both expressions, he can

solve them either if B and B^ slyg to one another as two squares or

C and are both squares. Several examples of indeterminate

equations of degrees higher than the second also occur. The

opinion of Nesselmann on the methods of Hiophantus is

shortly as follows: (1) Indeterminate equations of the 2nd

degree are treated completely only when the quadratic or the

absolute term is wanting : his solution of the equations

^^2 ^ (y _ 2^2 ^ is in many respects cramped.

(2) For the ‘double equation’ of the 2nd degree he has a

definite rule only when the quadratic term is wanting in both

expressions: even then his solution is^ not general. More

complicated expressions occur only under specially favourable

circumstances. (3) The solution of the higher ittdeterminates

depends almost entirely on very favourable numerical con-

ditions and his methods are defective

\

71 . But the extraordinary ability of Diophantus appears

rather in the other department of his art, namely the ingenuity

with which he reduces every problem to an equation which he

is competent to solve. To exhibit completely his cleverness in

this respect would be, as Nesselmann says : “to transcribe his

book^” The same critic, however, has selected a number of

1 The following remarks by an accom-

plished critic will sufficiently excuse me
for saying so little on the Diophantic

equations and their solutions. “In 130

indeterminate equations, which Dio-

phantus treats, there are more than 50

different classes...Almost more various

than the problems are their solutions..

.

Each calls for a quite distinct method,

which is often useless for the most

closely-related problems. It is there-

fore difficult for a modern, after study-

ing 100 Diophantic equations, to solve

the 101st.” Hankel, pp. 164—165.

2 Nesselmann, ch. 9, pp. 355 sqq.

8—2
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typical specimens, exhibiting the most striking characteristics

of Diophantus' style. Some of these may be here given.

(1) Diophantus shows great Adroitness in selecting the unknown,

especially with a view to avoiding an adfected quadratic. Thus

IV. 38 is a problem ‘to find 3 numbers, so that the product of

any two -f- the sum of the same two shall be given numbers

V

Here a5 + (X + 6 = 8:6c + 6 + c = 15 :ac+a+c = 24. Here he

takes & + 1 = whence h x — 1. Then from the first equation

a = - — 1 : from the second c = —
X X

1 : from the third x='^-g,

In I. 16 ‘To find 3 numbers such that the sum of each pair is

a given number,’ the three given sums being a, h, c he takes the

sum of all three numbers together =•• x. The numbers therefore

are x — a, x — h, x — c. Whence Sx — (a b + c) = x

:

and

X =
^ (2) The most common and characteristic of

Diophantus’ methods is his use of tentative assumptions^ which

is applied in nearly every problem of the later books. It con-

sists in assigning to the unknown a preliminary value which

satisfies one or two only of the necessary conditions, in order

that, from its failure to satisfy the remaining conditions, the

operator may perceive what exactly is required for that purpose.

1 Of. also I. 16, 18, 23, ii. 33, m. 5,

6, 7, 16, IV. 14, 16, 38 etc. Diophan-

tus, of course, does not, in the selected

specimen or elsewhere, use a, b, c, or

other symbols. He says ‘the first,

second, third numbers, the product of

the first and second’ etc. describing

in full every expression which does not

contain the unknown s. I have oc-

casionally, for shortness, also altered

the wording of a problem, by intro-

ducing the given number or given ratio

etc. into the enunciation,

^ Nesselmann quotes too many speci-

mens to be here cited. He calls this

procedure. ‘FuZscTier Ansatz\ but says

that it is to be distinguished from the

later “so beriihmt gewordene regula

Jalsi Oder falsa positio'" (mentioned

above p, 100 n.), with which it has

nothing in common. Both processes

seem to me to go pari passu up to a

certain point. Here is an Italian speci-

men of the simple ‘ falsa positio ’ given

by Dean Peacock. ‘I buy a jewel and

sell it for 50 lire (1 lira = 100 soldi) : I

make 3^- soldi on each lira of the origi-

nal price. What did I give for the

jewel?” The operator says : ‘Assume

that I gave 30 lire: then I should have

sold it for 31. But, in reality, I sold

it for 50. Therefore the original price

was In Diophantus, however,

the original assumption is completely

dismissed, when its falsity, and the

reason of this, are discovered, and no

further use is made of it.
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A good example is lY. 9 : 'To find a cube and its root such

that if the same number be added to each, the sums shall also

be a cube and its root.’ Here let x be the number added, 2x

the root, 8^^ the cube. Then 8x^ x = {SxY = 27x^, whence

= 1. As is to have a rational value, 19^^ = 1 will not suit.

‘Now this 19 arises’ says Hiophantus in effect ‘from the differ-

ence of 27x^ and 8^^, or the cubes of Sx and 2x. There is a

difference of 1 between these last coefficients. Let me now
find two numbers x and x such that the difference between

their cubes is a square number. That difference will be

8x^ -hSx + 1. If I assume this to be = {2x — 1)^, I shall find

X = 7, and my two numbers are 7 and 8. Now I return to my
original problem. Let x again be the number to be added, 7x

the root and the cube. Then + x=: (7x + xY=512x^,

whence 169^1?^= 1 and x = -^j/ This example will serve also to

illustrate a third characteristic of Hiophantus, viz. (3) the

use of the symbol for the unknown in different senses'^. The

following is a more complicated instance of both methods. In

IV. 17 the problem is ‘to find 3 numbers, such that their sum
is a square and that the square of any one of them -H the

following number is a square.’ The 3 numbers are first taken

as ^ - I, 4^ and 8^ + I, where {x - 1)^ -1- 4^x and (ixf -F 8ii? + 1

are both square numbers. Two conditions are thus satisfied. But
the sum of all 3 numbers, viz. 18x, must be a square. ‘Take

IZx equal to with some square coefficient, e.g. 169^1 Then
X = 18x^! A new use of x is thus introduced and 13^*?^ is sub-

stituted for the original x, the numbers now being 18x^ — 1,

52x^ and I04.r;^-|-I. A fourth condition remains, viz. that

(104^^ + I)^ -f (13^^ — 1) shall be a square number. Hiophantus,

then, takes this expression equal to x^ (104^+1)^, findsa; =
-|f,

and substitutes this value in the expression. The use of

‘tentative assumptions’ leads, again, to another device which

may be called (4) the method of limits'^. This may best be

illustrated by a particular example. If Hiophantus wishes to

find a square lying between 10 and 11, he multiplies these

^ If in any particular case, confusion hij name. Nesselmann cites i. 22, iii.

is likely, Diophantus alludes to the 18, iv. 17, 18, vi. 13, 14, 15 etc.

first symbol as 6 doptcrros, 17 bvvajjas etc. ^ Compare iv. 45, v. 33, vi. 2, 23 etc.
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numbers by successive squares till a square lies between the

products. Thus between 40 and 44, 90 and 99 no square lies,

but between ICO and 176 there lies the square 169. Hence

will lie between the proposed limits. The method is

very neatly used in the following instance. In IV. 34 the

problem is 'to divide 1 into two parts, such that if 3 be added

to the one part and 5 to the other, the product of the two sums

shall be a square.’ If one part be a; — 3, the other is 4 —
Then x (9 — x) must be a square. Suppose it —4,x^: then x=^.

But this will not suit the original assumption, since x must be

greater than 3 (and less than 4). Now 5 is 4 + 1 : hence what

9
is wanted is to find a number + I such that —- is > 3 and

2/ + 1

<4. For such a purpose must be < 2 and > IJ. “I resolve

these expressions into square fractions” says Diophantus and

selects and between which lies the square or fJ. He
25^2

then takes x (d — x) = instead of 4x^ Sometimes, indeed,
^ ^16

Diophantus solves a problem wholly or in part by (5) synthesis^.

Thus IV. 31 is ‘To find 4 squares, such that their sum added to

the sum of their roots is a given number.’ The solution is as

follows. “Let the given number be 12. Since a square + its

root + 1 is a square, the root of which minus J is the root of the

first-mentioned square, and since the four numbers added

together = 12, which plus the four quarters (12 4- 1) is 13, it

follows that the problem is to divide 13 into four squares. The

roots of these minus J each will be the roots of the four squares

sought for. Now' 13 is composed of two squares 4 and 9: each

of which is composed of two squares, viz. and f|.

The roots of these, viz. |, f, and f, minus J each, are the

roots of the four squares sought for, viz. : and the

four squares themselves are {JJ, and Although

it has been said above, and has been sufficiently shown by the

foregoing examples, that Diophantus does not treat his problems

generally and is usually content with finding any particular

numbers which happen to satisfy the conditions of his problems,

^ Compare also m. 16, iv. 32, v. 17, 23 etc.
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yet it should be added that he does occasionally attempt (6)

such general solutions^ as were possible to him. But these

solutions are not often exhaustive because he had no symbol for

a general coefficient. Thus in V. 21 ‘to find 3 numbers, such

that each of them shall be a square minus 1 and their sum

shall be a biquadrate (SvvajaoSvvafiLsy he finds the 3 numbers

in the form — 2x^, x^ + 2x and — 2x, and adds ‘the problem

has been solved in general (aopiaTOis^ terms/ and at the end of

IV. 37 (comp, also iv. 20) where a similar solution is given he

remarks “A solution in general terms is such that the unknown

in the expressions for the numbers sought may have any value

you please.” The problems iv. 20, 37, 39 and 41 are expressly

problems for finding general expressions. He solves them by a

‘tentative assumption.’ For instance iv. 39 is ‘To find two

general expressions for numbers such that their product minus

their sum is a given number.’ The solution runs as follows

:

‘The given number is 8. The first number may be taken as x,

the second as 3. Then 2x — ^—H, and x — h\. Now is y,
11 is the given number plus the second : and 2 is the second

minus 1. Hence at whatever value the second number be

taken, if I add it to the given number and divide the sum by

the second number minus 1, I get the first number. Suppose

X "1“ 9
the second number to be a; + 1 : then is the first.’ These

general solutions for two numbers are immediately afterwards

(iv. 21, 38, 40, 42) used in problems of a similar character for

three numbers, of which two are first found in general terms

and then the third by a determination of x in the usual manner.

Sometimes, however (e.g. iv. 26 and frequently in the 6th

book^), a problem after being solved by particular numbers

(as 40, 27, 25) is solved generally (by 40a;, 27a?, 25a? in iv. 26).

But though the defects in Diophantus’ proofs are in general

due to the limitation of his symbolism, it is not so always.

Very frequently indeed Diophantus introduces into a solution

(7) arbitrary conditions and determinations which are not in the

1 VI. 3, 4, 6, 7, 8, 9, 10, 11, 13, 15, 17.

See Nesselmann, pp. 418—421. The
problems of the vith Book deal almost

entirely with ‘right-angled triangles’,

i.e. with sets of three numbers, such

that + ^2 _ ^,2
^
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problem. Of such “ fudged ” solutions, as a schoolboy would call

them, two particular kinds are very frequent. Sometimes an

unknown is assumed at a determinate value as in I. 14 ‘ To

find two numbers whose product is three times their sum,’

where Diophantus, without a word of apology, takes the first

number as x, the second as 12. Sometimes a new condition is

introduced, as in VI. 19, where, two numbers being sought such

that the cube of one is greater by 2 than the square of the

other, Diophantus takes the numbers as 1 and + 1, thus

introducing a condition that the difference between the two

numbers shall be 2. A very remarkable case of the latter kind

occurs in iv. 7 where the problem would be, in our symbolism,

to find three numbers, ¥, c^ so that shall be a square,

a cube. Diophantus begins his solution by taking

= a^. Arbitrariness of this kind is of course different

from the cases in which Diophantus merely takes a particular

number, where any other would evidently do as well. In the

latter, he is urged by the defects of his symbolism : in the

former he is urged only by the want of a solution to a particular

problem : the difference is one of kind and not of degree.

72. From the very brief survey of the Arithmetica, it will

be obvious to the reader that it is a w^ork of the utmost

ingenuity but that it is deficient, sometimes pardonably, some-

times without excuse, in generalization. The book of Boris-

mata, to which Diophantus sometimes refers, seems on the other

hand to have been entirely devoted to the discussion of general

properties of numbers. It is three times expressly quoted in

the Arithmetica. These quotations, when expressed in modern

symbols, are to the following effect. In v. 3 the porism^ is cited :

‘If X + a = m^, y a and xy a— p^, then m = nAV\ in

V. 5: ‘If three numbers x^, {x -k 1)^ Ax^ A Ax A A, be taken, the

1 Other examples in i. 25, 26, 27, 28,

II. 19, V. 7, 30, 31.

2 Nesselmann, pp. 441—443, shews

that the conditions may he satisfied by

numbers of other forms. Of the 2nd

porism he says (p. 445) that more

general expressions might be found for

the numbers but he will not trust him-

self to find them. Of the 3rd he says

(pp. 445—446, after Fermat) that Vieta

uses it in the last propositions of the

4th Book of his Zetctica. The 3rd

porism is mutilated in the quotation.
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product of any two + their sum, or + the remaining number, is

a square: in v. 19 ‘the difference between two cubes maybe
resolved into the sum of two cubes/ Of all these propositions he

says €)(oiJLev iv roh 'iropLG-fjiacrcv, ‘we find it in the Porisms’; but

he cites also a great many similar propositions without expressly

referring to the Porisms. These latter citations fall into two

classes, the first of which contains mere identities, such as the

algebraical equivalents of the theorems in Euclid il. For

instance in Diophantus ll. 31, 32, and IV. 17 it is stated, in

effect, that P + y~ ^2xy is always a square (Eucl. ii. 4): in

II. 35, 36, III. 12, 14 and many more places it is stated that

(

Oj—
^ j

+ ah is always a square (Eucl. Ii. 5) etch The other

class contains general propositions concerning the resolution of

numbers into the sum of two, three or four^ squares. For

instance, in ii. 8, 9 it is stated ‘Every square number’ (in il. 10

‘every number which is the sum of two squares’) ‘may be re-

solved into the sum of two squares in an infinite number of

ways’: in Y. 12 ‘A number of the form (4^ 4- 3) can never be

resolved into two squares,’ but ‘every prime number of the

form (4?^ + l) maybe resolved into two squares’: in v. 14 ‘A

number of the form (Sti + 7) can never be resolved into three

squares.’ It will be seen that all these propositions are of the

general form which ought to have been but is not adopted in

the Arithmetica. We are therefore led to the conclusion

that the Porismata, like the pamphlet on Polygonal Numbers,

was a synthetic and not an analytic treatise. It is open,

however, to anyone to maintain the contrary, since no proof

of any porism is now extant.

With Diophantus the history of Greek arithmetic comes

to an end. No original work, that we know of, was done

afterwards. A few scholiasts appear, such as Eutocius of

^ Nesselmann, pp. 446—450, cites 10

siicli identities, most of which are used

more than once by Diophantus.

2 In IV. 31, 32, V. 17 Fermat

thought that Diophantus was using a

proposition ‘Every number whatever

cain be resolved into four squares, ’ but

Nesselmann (p. 460—1) inclines to the

opinion that Diophantus did not know
this proposition generally but was rely-

ing on the known properties of certain

determinate numbers.
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Askalon {cir. A.D. 550) who wrote on Archimedes, AscUpius

of Tralles and his pupil John Philoponus (cir. A.D. 650) who

wrote on Nicomachus, and the unknown commentators who
have added lemmas to the arithmetical books of Euclid

;
but

though there is evidence that the old mathematicians were still

studied in Athens and Alexandria and elsewhere, no writer of

genius appears and the history of arithmetic and algebra is

continued henceforth by the Indians and Arabs.



PAET III. GEOMETEY.

CHAPTEK Y.

PRE-HISTORIC AND EGYPTIAN GEOMETRY.

73. Tee earliest history of Geometry cannot be treated in

the same way as that of Arithmetic. There is not for the

former, as there is for the latter, a nomenclature common to

many nations and languages
;
and the analysis of a geometrical

name in any one language leads only to the discovery of a root-

syllable which is common to many very different words and to

which only the vaguest possible meaning may be assigned.

Nor is any assistance, so far as I know, furnished by travellers

among savage and primitive races. Arithmetical operations are

matters of such daily necessity that every general arithmetical

proposition, of which a man is capable, is pretty certain to be

applied in his practice and to attract attention : but a man may
well know a hundred geometrical propositions which he never

once has occasion to use, and which therefore escape notice. I

have sought, in vain, through many books which purport to

describe the habits and psychology of the lower races, for some

allusion to their geometrical knowledge or for an account of

some operations which seem to imply geometrical notions.

One would be glad, for instance, to learn whether savages

anywhere distinguish a right angle from an acute. Rave they

any mode of ascertaining whether a line is exactly straight or

exactly circular ? Do they by name distinguish a square from

any other rectilineal figure ? Do they attach any mysterious

properties to perpendicularity, angular symmetry, etc.? We
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have, at present, no answer to these and similar questions and

there is consequently a gap in the history of geometry which

no writer, since Herodotus, has attempted to fill up. Where

this gap occurs will be seen from the following remarks^.

74. Geometry is the science of space and investigates the

relations existing between parts of space, whether linear, super-

ficial or solid. Some of these relations are obviously capable

of arithmetical expression, so soon as units of length, area

and solid contents are selected. For the first of these, some

measurement of the human body has universally served: the

finger-hreadth, palm, span, foot, ell, cnhit, fathom have been

and are, all the world over, the units of length. Distances

too great to be exactly ascertained have also generally been

measured by some reference to human capacity, such as "a

stone’s throw,’ ‘within shouting distance’ ipcra-ov re '^/eycove

^or}(ra<; as Homer has it) ‘a day’s journey’ etc. But the human
body does not furnish any convenient unit of area or solid

contents. Large areas and volumes, like long distances, seem in

primitive times to have been described roughly by reference to

labour; a field, for instance, is a ^morning's work’ (Ger. morgen)

or a day’s work for a yoke of oxen (L^t. jugerum) : a barn

contains so many loads : but we do not know how^ small areas

and volumes were described^ Now the oldest exact geometry,

of which we know anything, is concerned almost entirely with

the measurement of various areas or solids by reference to a

square or a cubical standard unit. The selection of these par-

ticular shapes, out of several which prima fade would serve

1 The modern writers on the history

of Greek geometry, whom I have

chiefly consulted, are the following:

Bretschneider, Die Geometrie und die

Geometer vor Eukleides (Leipzig,

1870): Hankel, Zur Geschichte der

Mathematik (Leipzig, 1875): Dr G.

J. Allman, Greek Geometryfrom Thales

to Euclid in Hennathena (Dublin) Nos.

V. and VII. (Yols. iii. and iv. 1377 and

1881), Cantor, Vorlesungen iiber Ge-

schichte der Mathematik (Leipzig 1880),

Prof. M. Chasles, Apergu Historiqiie

sur Vorigine etc. de Geometrie (Paris,

1837 and 1875. Both editions

are identical). Bretschneider and the

rest convict Montncla {Hist, des

Mathem. 1758) of so many mistakes

in his history of Greek mathematics,

that I have seldom referred to him.

All these authors will in future be

cited generally by name only.

- Small volumes were perhaps de-

scribed by weight, as conversely Gr.

dpaxiiy, properly a ‘handful,’ came to

be a standard of weight.
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just as well, implies a long period of observation and considera-

tion. How did this observation begin ? It must be assumed,

of course, that mankind, like birds and bees, were from the first

familiar with, and able to distinguish, the many symmetrical

figures which occur in nature and that they knew generally that

suspended strings all hang alike and that all posts, to be stable,

must be stuck in the ground in a particular mannerb But the

question is, how they were induced to examine the properties

of these figures, to investigate the peculiarities of this par-

ticular angle. Herodotus says (il. 109) that Sesostris (Ramses

II. abt. 1400 B. c.) divided the land of Egypt into equal

rectangular (or square) plots for the purpose of more convenient

taxation; that the annual floods, caused by the rising of the

Nile, often swept away portions of a plot, and that surveyors

were in such cases appointed to assess the necessary reduction

in the tax. ‘Hence in my opinion’ {SoKeec Se fioi) he goes on

‘arose geometry, and so came into Greece.’ The same account

is elsewhere^ repeated as legendary, without reference to

Herodotus, and it is not unlikely to bo an Eg^^ptian tradition

which Herodotus appropriated. This history of geometry is

generally scouted®, but I think it perhaps contains a germ of

truth. Suppose that lands were originally measured roughly by

their produce or by the labour which they demanded. Then,

I imagine, the first attempt at exact numerical calculation of

areas was merely the measurement of the periphery, a method
which was useful enough so long as the areas were of approxi-

mately the same shape. But in process of time areas of one

1 It may be supposed that attention

would be called to the right angle be-

cause it is, as Aristotle calls it, the

‘ angle of stability.’ But men might

well recognise a right angle in the

vertical plane without recognising it in

the horizontal. Compare the remarks

of CEnopides, an early Greek geometer,

quoted below p. 147.

2 Heron Alex. Bell. ed. Hultsch, p..

138. Diodorus Sic. i. 69, and 81.

gtrabo, XVII. c. • 8 (Meineke’s ed. p.

1098). The quotations are printed

in full in Bretschneider, Geometrie etc.

vor Eukleides, pp. 7—9.

^ Prof, de Morgan quotes (Art.

Geometry in Penny Cyclop.) from “an
obsolete course of mathematics” the

following lines

:

‘To teach weak mortals property to

scan

Down came geometry and formed a

plan.’
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shape were exchanged for areas of another shape, and it was

then for the first time discovered that figures of equal periphery

are not necessarily of the same areah A man who had had a

square field, for instance, exchanged it for a rhombus of equal

periphery, but found that he got less produce than before. A
discovery of this kind would at once call attention to angles

and suggest the propriety of establishing a unit of area. The
utility of the square unit might have been established by long

experience or have been suggested by the aspect of stone or

brick-buildings subsequent to the Cyclopean era of archi-

tecture.

75. But it is needless to dwell longer on a theory which

must, at present, remain purely conjectural. Whatever opinion

be ultimately adopted concerning the first steps in geometry, it

will always remain true that the word ‘geometry’ (yeay/jberpLa)

means ‘land-measurementV that the Egyptians gave this science

to the world and that among the Egyptians, from first to last, it

answered to its name and was confined almost entirely to the

practical requirements of the surveyor.

The work of Ahmes, which was so frequently cited in the

earlier pages of this book, contains, beside sums in arithmetic,

a great many geometrical examples which deserve to be cited

^

Immediately after the examples of Tunnu- or difference-

calculation cited above (p. 19), Ahmes proceeds to calculate the

contents of barns and other similar receptacles, of which un-

fortunately we do not know the shape, so that the necessary

1

The erroneous assumption that

figures of equal periphery are of the

same area appears in classical authors.

Thucydides (vi. 1) estimates the area

of Sicily by the time spent in circum-

navigating it. Polybius (ix. 21) men-
tions that there are some people who
cannot understand that camps of the

same periphery may not be the same

size. Quintilian (i. 10, 39 sqq.) points

out the fallacy as one that easily

deceives the vulgar. So also Proclus

(ed. Friedlein, p. 237). See Cantor,

pp. 146—7.

2 So in Egyptian hunu=
measurer,’ ‘geometer,’ v. Brugsch’s

Hierogl. Demot. Worterbuch, p. 967.

3 It is curious that all the geo-

metrical matter occurs in the middle

of the arithmetical and that the cal-

culation of solid contents precedes the

calculation of areas. From this it

may perhaps be inferred that the geo-

metrical propositions known to Ahmes.

were empirically obtained and that

he was really interested only in the

arithmetical problems which they sug-

gested.
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clue to the interpretation of the examples is wanting^ For the

examples in plane geometry (Nos. 49—55), however, the figures

given by Ahmes are sufficient, save in a few cases ^ where

solutions and figures are given which have no connection what-

ever with the problems to which they are appended. The

rectilineal figures of which Ahmes calculates the areas are the

square, oblong, isosceles triangle and isosceles parallel-trapezium

(regarded as part of an isosceles triangle cut by a line parallel to

the base). As to the last two, the areas which he finds are

incorrect. Thus in Ex. 51 he draws an isosceles triangle of

which the sides measure 10 ruths, the base 4 ruths. He mul-

tiplies the side by half the base and finds the area at 20 square

ruths. The real area is 19*6. Similarly in no. 52 the area of

an isosceles parallel-trapezium is taken to be 100 square ruths,

instead of 99’875^ The errors in these cases are small but are

not on that account the less suggestive. The area of a circle is

found (in no. 50) by deducting from the diameter -Jth of its

length and squaring the remainder. Here tt is taken = =
3T604

,
a very fair approximation.

76 . Lastly, the papyrus contains (nos. 56 to 60)^ some

examples which seem to imply a rudimentary trigonometry.

In these (except the last) the problem is to find the uchateht,

lEisenlohrpp. 93—117, Nos. 41—48.

The contents of all the barns are ob-

tained in this way. Of three given

linear measurements two are multi-

plied together and the product is

multiplied by one-and-a-half of the

third. But it does not appear whether

the first product is the area of the top

or the bottom or the side of the barn

or of what line the third given number
is the measure.

2 E.g. nos. 53, 54. Eisenlohr pp.
118—133.

3 Eisenlohr, pp. 125, 127—129. If

in an isosceles triangle the eq^ual sides

be a, a, the base b, the area is

If in an isosceles parallel trapezium

the equal sides be a, a, the parallel

b^ + h
2

Ahmes makes the areas

respectively, neglecting the difficult

square roots.

^ Eisenlohr, pp. 134—149. On the

use of these segt calculations, see be-

low p. 142. In Ahmes, of course, they

are only exercises in arithmetic.
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2nremiis or seqt of a pyramid or obelisk. Ucliateht apparently

means ‘search for the base’ and is clearly a line which has

something to do with the base
:
pireinus apparently means

‘result (or issue) of the saw’ and is a line which can be obtained

only by section of the pyramid: seqt apparently means ‘relation’

or ‘like-making,’ and is a number. For the purposes of these

problems, the uchateht is always halved. By means of these

clues, Eisenlohr and Cantor have very ingeniously explained

the purport of Ahmes’ examples. In the pyramid figured the

uchateht may be either 2DE (i.e.

DL) or 2BE (i.e. BE) : the pi-

remus may be eitherA Z> or AB,
according as the pyramid is cut

parallel with the base-line or C

along the diagonal of the base-

square b The problems which

Ahmes proposes are always of

the form ‘Given any two of the

uchateht, piremus and seqt, to find the third,’ and the solution

is always obtained from the fact that the seqt is half the uchateht

divided by the piremus. In the figure above given, therefore.

,
. BE BE

the seqt is or i.e. cos ABE or cos ABE. The actual

seqt given by Ahmes is, in one case, 0*72, in three more 0*75.

These are the cosines of the angles 43*^ 56' 44" and 41“ 24' 34"

respectively. The angle ABE in most existing pyramids is

nearly of these measurements. Further, these cosines of ABE
correspond to angles of 53® 44' 7" and 51® 16' 40" respectively

at ABE and these again are nearly the slopes of most existing

pyramids b This explanation being premised, the problems

1 It cannot be that the uchateht is

the visible base-line, the piremus the

sloping edge; for it is a property of

pyramids upon square bases, such as

Ahmes seems to be considering, that

half the square of the base-line can

never be greater than the square of

the sloping edge. But in Ahmes’ first

example the uchateht is 360 ells, the

piremus 250. Eisenlohr, p. 135.

2 According to Piazzi Smith the

slopes of the largest pyramid at Gizeh

are between 51® 49' and 51” 51'. If

the face of a pyramid on a square

base were equal to the square of the

height, the slope would be 51” 50'.

If the base were equal to a circle of

which the height is the radius, the
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themselves may here be given. In no. 56 it is required to find

the seqt (S) of a pyramid, v^hereof the uchatebt (U) is 860 ells,

the piremus (P) is 250 \ The answer is Keducing ells to

palms,. (1 ell — 7 palms) 8 is 5^15- palms, that is, there are 5^

palms in to every ell in P. In no. 57 Z7 is.I40 ells : seqt is

5i palms. Find P. The answer is 93J ells. In no. 58 the

dimensions of U and P are as in no. 57. Find 8. In no. 59

new dimensions of U and P are given, but 8 is again found at

5J palms. No. 60 does not relate to a pyramid at all. It

applies to an obelisk of which the height (qdi) is 30 ells : the

base-line (senti) 15. The seqt here is determined at 4, which is

the tangent of the angle included between the side and the

base-line of a triangular face. The figures appended are very

ill-drawn to scale and are all furnished with a pedestal : e.g. the

figure to no. 58 is like

77 . One or two glimpses of Egyptian geometry are ob-

tained also at a far later time. The most interesting is fur-

nished by the etymology of a Greek word. The philosopher

Democritus {cir. B. c. 460—370) is quoted by Clement of

Alexandria^ as saying, “In the construction of plane figures

(lit. composition of lines) with proof no one has yet surpassed

me, not even the so-called Harpedonaptae of Egypt.” It was

evident, of course, that these Harpedonaptae were famous geo-

meters, but Prof. Cantor has first pointed out that their

name is compounded of two Greek words and means simply

slope would = 51° 51'. Mr Petrie’s

measurements {Pyramids and Temples

of Gizeh, 1883, pp. 42, 97, 112) do

not differ substantially from Piazzi

Smith’s.

The Egyptian ell, according to

G. G. M.

Lepsius, is 525. Eisenlohr p. 94.

2 Strom. I. p. 357 (Potter’s ed.) ypa/a-

fiitov avvdealos ixerd dirodeL^ios ovdeis ku)

fie irapyWa^et', ov8’ ol AlyvirTLoov KaXeo-

p.evoL ' ApTredomTTTat.

9
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‘rope-fasteners’ or ‘rope-stretchers.’ He explains their functions

in the following wayh There is no doubt that the Egyptians

were very careful about the exact orientation of their temples

and other public buildings. But inscriptions seem to shew that

only the N. and S. line was drawn by actual observation of the

stars. The E. and W. line, therefore, was drawn at right-

angles to the other. Now it appears, from the practice of

Heron of Alexandria and of the ancient Indian and probably

also the Chinese geometers, that a common method of securing

a right angle between two very long lines was to stretch round

three pegs a rope measured into three portions, which were to

one another as 3 : 4 : 5. The triangle thus formed is, of course,

right-angled. Further, the operation of ‘rope-stretching’ is

mentioned in Egypt, without explanation, at an extremely early

time (Amenemhat i.) If this be the correct explanation of it,

then the Egyptians were acquainted, 2000 years B.C., with the

geometrical propositions familiar to us as Euclid I. 47, 48^, or

with one particular case of them.

78. It will readily be supposed that the Egyptians, who

had so early invented so many rules of practical geometry,

could not fail in process of time to make many more discoveries

of the same kind, and thus be led to geometrical science. But

it appears that in Egypt land-surveying, along with writing,

medicine and other useful arts, was in the monopoly of the

priestly caste that the priests were the slaves of tradition,

and that, in their obstinate conservatism, they were afraid to

alter the rules or extend the knowledge of their craft. Of their

medicine, Diodorus (i. 82) expressly relates that, even in his

day, the Egyptian doctors used only the recipes contained in the

ancient sacred books, lest they should be accused of manslaughter

in case the patient died. Geometry seems to have been

treated with similar timidity. The temple of Horus at Edfu,

1 Vorles. I. pp. 55—57 (Egyptian 2 Compare Plutarch, Be Is. et Osir.

Temple inscriptions etc.) pp. 324—5 c. 56.

(Heron): pp. 540—542 (the ^ulva- ^ Isocrates, c. 9. Aristotle,

siltras): pp. 580—581 (Chinese ‘Figur Metaph. i. 1. Diodor. Sic. r. cc. 69,

des Seiles’). Compare also Hankel, p. 81, 82. With c. 82 comp. Arist. Pol.

83. III. 15.
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in Upper Egypt, bears som« inscriptions describing the lands

which formed the endowment of the priestly college attached

to the temple. These lands were given by King Ptolemy XI.

(Alexander I.) who reigned R.c. 107—88, but the geometrical

description of them, made 200 years since Euclid died, is un-

worthy of Ahmes himself. It will be remembered {supra, p. 127

n. 3) that Ahmes uses the incorrect formulae ^ and

for the areas of an isosceles triangle and an isosceles parallel-

trapezium. The Edfu inscriptions retain both these, but they

apply the second for finding the areas of trapezia of every

kind, no matter how irregularh The dulness, or laziness, of

this proceeding is monumental in more senses than one. It

is obvious that the Greek mathematicians had by this time no

more to learn from the native Egyptians, and we may therefore

leave Egyptian geometry with a quiet conscience.

79. It remains only to cite the universal testimony of

Greek writers, that Greek geometry was, in the first instance,

derived from Egypt, and that the latter country remained for

many years afterwards the chief source of mathematical teaching.

The statement of Herodotus on this subject has already been

cited. So also in Plato’s Phaedrus Socrate^ is made to say

that the Egyptian god Theuth first invented arithmetic and

geometry and astronomy. Aristotle also {Metaph. I. 1) admits

•that geometry was originally invented in Egypt, and Eudemus
(see post pp. 134, 135) expressly declares that Thales studied

there. Much later Diodorus (b.c. 70) reports an Egyptian

tradition that geometry and astronomy were the inventions

of Egypt, and says that the Egyptian priests claimed Solon,

Pythagoras, Plato, Democritus, (Enopides of Chios and Eudoxus

as their pupils^. Strabo gives further details about the

visits of Plato and Eudoxus. He relates that they came to

Egypt together, studied there thirteen years, and that the

1 Hankel, pp. 86, 87. Cantor, pp.

60, 61. In the case of a trapezium

with 4 unequal sides {a, h, c, d) the

formula is ^ • The Edfu in-

scriptions use this also for triangles,

the dimensions here being given e.g.

as “nothing by 5, and 17 by 17.”

2 Diodorus i. cc. 69, 96.

9—2
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houses where they lived were still shown in Heliopolis\ Later

writers, of course, have the same tale, and it is needless to

collect further evidence. Beyond question, Egyptian geometry,

such as it was, was eagerly studied by the early Greek philo-

sophers, and was the germ from which in their hands grew that

magnificent science to which every Englishman is indebted for

his first lessons in right seeing and thinking^

80 . A word or two should be added also in this place con-

cerning Babylonian mathematics ^ The Chaldees, at a time

almost contemporaneous with Ahmes, but whether independently

or not cannot now be ascertained, had made advances, similar to

the Egyptian, in arithmetic and geometry, and were especially

busy with astronomical observations. It seems that they had

divided the circle into 360 degrees, and that they had obtained

a fairly correct determination of the ratio of the circumference

of a circle to its diameter. They used, also, in arithmetic, as

has been stated above, a sexagesimal notation, which the Greeks

afterwards adopted for astronomical purposes. Herodotus^ ex-

pressly states that the polos and gnomon (two kinds of sundials)

and the twelve parts of the day were made known to the Greeks

from Babylon. Much of the trigonometry and spherical geometry

of the later Greeks may also have been directly derived from

Babylonian sources.

Finally, it should be remembered that however scanty

geometrical theories may have been both in Egypt and Chaldea,

a very great variety of geometrical figures was used in both

^ Strabo, xvii. 1. Meineke’s ed.

p. 1124. Bretschneider (pp. 33, 34),

however, thinks that, before Plato’s

time, Greek geometry had so far out-

stripped the Egyptian that no Greek,

after about 450 b.c., would have visit-

ed Egypt for the purpose of learning

geometry. He supposes therefore that

Plato and Eudoxus went to Egypt

to learn astronomy, as in fact the

passage of Strabo, above quoted, sug-

gests.

2

Diodorus i. 98 says also that

Telecles and Theodoras, the most

famous of the ancient Greek sculptors,

studied in Egypt, as did their father

Ehoecus, who designed the labyrinth

in Lemnos. (Bretschneider, p. 24.)

3 See Cantor chap. iii. pp. 67—94.

4 II. 109. Pliny [H. N. ii. 76) attri-

butes the introduction of the gnomon

to Anaximenes, Suidas to Anaximan-

der (s. V.). Diogenes L. (ii. 1) and

Suidas both attribute a (hpoaKoweiov,

probably the polos, to the latter. On
the gnomon and polos see below p.

145 n.



PRE-HISTOEIC AND EGYPTIAN GEOMETRY. 133

countries for mural decoration and other ornamental purposes

^

To a Greek, therefore, who had once acquired a taste for

geometry, a visit to Egypt or Babylon would reveal a hundred

geometrical constructions which, on inspection, suggested new
theorems and invited scientific inquiry.

1 See Cantor, pp. 58, 59, 89, 90.



CHAPTER VI.

GREEK GEOMETRY TO EUCLID, {a) Preliminary.

81 . An elaborate history of Greek geometry before Euclid

Avas written by Eudemus\ the pupil of Aristotle, who lived

about 330 B.C. The book itself is lost but is very frequently

cited by later historians and scholiasts, and it may be suspected

also that many notices, not directly ascribed to it, Avere taken

from its pages. Proclus, the scholiast to Euclid, who knew the

work of Eudemus well, gives a short sketch of the early history

of geometry, which seems unquestionably to be founded on the

older book. The whole passage, which proceeds from a com-

petent critic, and which determines approximately many dates

of which we should otherAvise be quite ignorant, may be here

inserted verbatim by way of prologue. It will be cited here-

after as “ the Eudemian summary.” It runs as follows^

:

“ Geometry is said by many to have been invented among

the Egyptians, its origin being due to the measurement of plots

of land. This Avas necessary there because of the rising of the

^ Diog. Laert. v. c. 2, n. 13 (ed.

Huebner, i. pp. 347, 348), attributes to

Theophrastus, another pupil of Aris-

totle, contemporary with Eudemus, a

history of geometry in 4 books, of

astronomy in 6, and of arithmetic in 1

book. Bretschneider (p. 27) is not in-

clined to the general opinion that

Diogenes has here confused Theo-

phrastus with Eudemus.
2 Procli Diadochi Comm, in primum

End. EJem. librum, ed. Friedlein

(Leipzig, 1873) pp. 64 sqq. This work

will be cited in future simply as ‘Pro-

clus.’ Of the Eudemian summary,

the original Greek is printed also by

Bretschneider (pp. 27— 31), with a

(not very exact) German translation.

A pretty close paraphrase is given by

Prof, de Morgan in art. Eucleides of

Smith’s Die. of G. and R. Biography

and another by Dr Allman in Her-

mathena (Dublin), no. v. for 1877, p.

160 sqq.
,

.
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Nile, which obliterated the boundaries appertaining to separate

owners. Nor is it marvellous that the discovery of this and

the other sciences should have arisen from such an occasion,

since everything which moves in development will advance from

the imperfect to the perfect. From mere sense-perception to

calculation, and from this to reasoning, is a natural transition

h

Just as among the Phoenicians, through commerce and ex-

change, an accurate knowledge of numbers was originated, so

also among the Egyptians geometry was invented for the reason

above stated.

Thales first went to Egypt, and thence introduced this study

into Greece. He discovered much himself, and suggested to his

successors the sources of much more : some questions he at-

tacked in their general form, others empirically^ After him

Mamercus^ the brother of the poet Stesichorus, is mentioned as

having taken up the prevalent zeal for geometry : and Hippias

of Elis relates that he obtained some fame as a geometer.

But next Pythagoras changed the study of geometry into the

form of a liberal education, for he examined its principles to

the bottom and investigated its theorems in an immaterial and

intellectual manner. It was he who discovered the subject of

irrational quantities and the composition of the cosmical

figures^ After him Anaxagoras of Clazomenae touched upon

1

The text (ed. Friedlein) is eTretSr/

irav TO ev yevecrei (pepdfiev op dird roD

aTeXovselsTo riXetop TrpoeLcrip. diroaicrdr]-

(xews ovp eis\oyi<Tpiop Kai dirbrovTov iirl

povp 7} fxerd^affts yhoiTo dp dKorcos. Both

sentences are extremely obscure. The
second, I should think, represents a

chapter of Eudemus, in which the

history of geometry was exhibited near-

ly as I have shown it in preceding

pages. A pupil of Aristotle might well

have adopted the evolutionary hypo-

thesis here suggested. On the other

hand, \oyLap,bs does not necessarily

mean ‘arithmetical calculation’ and

povs ought not to mean ‘reasoning.’

Dr Allman translates the first by

‘refiection,’ the secu^xd by ‘know-

ledge,’ which is even less permissible.

Proclus, it should be remembered, was

a neo-Platonist and addicted to hazy

phraseology.

2 Prof, de Morgan translates “at-

tempting some in a general manner

{KadoXiKdrepop), and some in a percep-

tive or sensible manner {alad'qrLKd-

T€pcp).” Dr Allman gives “in a more

intuitional or sensible manner” for

the last word.

3 So Friedlein, other edd. have Ame-
ristus or Mamertinus.

^ That is, the five regular solids, the

tetrahedron, cube, octahedron, eicosa-

hedron, and dodecahedron, which were

supposed by the Pythagoreans to be

the primary forms of the matter of
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many departments of geometry, as did CEnopides of Chios, who

was a little younger than Anaxagoras. Plato mentions them

both in his ‘Rivals,’ as having won fame in mathematicsh

Hippocrates of Chios, next, who discovered the quadrature of

the lune, and Theodoras of Cyrene became distinguished

geometers, indeed Hippocrates was the first who is recorded

to have written ‘ Elements.’ Plato, who followed him, caused

mathematics in general, and geometry in particular, to make

great advances, by reason of his well-known zeal for the study,

for he filled his writings with mathematical discourses, and on

every occasion exhibited the remarkable connexion between

mathematics and philosophy. To this time belong also Leodamas

the Thasian and Archytas of Tarentum and Theaetetus of

Athens, by whom mathematical inquiries were greatly extended,

and improved into a more scientific system. Younger than

Leodamas were Neocleides and his pupil Leon, who added

much to the work of their predecessors : for Leon wrote an

‘Elements’ more carefully designed, both in the number and the

utility of its proofs, and fie invented also a diorismus (or test

for determining) when the proposed problem is possible and when

impossible, Eudoxus of Cnidus, a little later than Leon and a

student of the Platonic school, first increased the number of

general theorems, added to the three proportions three more,

and raised to a considerable quantity the learning, begun by

Plato, on the subject of the (golden) section^ to which he

applied the analytical method. Amyclas of Heraclea, one of

Plato’s companions, and Menaechmus, a pupil of Eudoxus and

a contemporary of Plato, and also Heinostratus, the brother of

Menaechmus, made the whole of geometry yet more perfect.

Theudius of Magnesia made himself distinguished as well in

other branches of philosophy as also in mathematics
;
composed

a very good book of ‘ Elements,’ and made more general pro-

positions which were confined to particular cases^ Cyzicenus

which the universe is made. Timaeus ^ Amatores, c. 1, 132 a.

(in Plato Tim. 53 c) says that fire con- ^ cutting of a line in extreme

sists of tetrahedrons, air of octahe- and mean ratio.

drons, earth of cubes, water of eicosa- ^ iroWa tuv opLKthv KadoXcKtorepa

hedrons, and the dodecahedron is the eiroirjcrep.

shape of the universe.
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of Athens also about the same time became famous iu other

branches of mathematics, but especially in geometry. All these

consorted together in the Academy and conducted their investi-

gations in common. Hermotimus of Colophon pursued further

the lines opened up by Eudoxus and Theaetetus, and discovered

many propositions of the ‘ Elements ’ and composed some on

Loci. Philippus of Mende, a pupil of Plato and incited by him

to mathematics, carried on his inquiries according to Plato’s

suggestions and proposed to himself such problems as, he

thought, bore upon the Platonic philosophy.”

“ Those who have written the history of geometry,” Proclus

continues, “ have thus far carried the development of this

science. Not much later than these is Euclid, who wrote the

‘ Elements,’ arranged much of Eudoxus’ work, completed much
of Theaetetus’s, and brought to irrefragable proof propositions

which had been less strictly proved by his predecessors.”

82. To this extract should be added another, which supplies

a very valuable criticism on the style of the early Greek

geometers. Eutocius, at the beginning of his commentary on

the Conics of Apollonius (p. 9, Halley’s edn.), quotes from

Geminus, an excellent mathematician of the first century B.C.,

the following remarks^

:

The ancients, defining a cone as the revolution of a right-

angled triangle about one of the sides containing the right

angle, naturally supposed also that all cones are right and there

is only one kind of section in each—in the right-angled cone

the section which we now call a parabola, in the obtuse-angled

a hyperbola, and in the acute-angled an ellipse. You will find

the sections so named among the ancients. Hence just as they

considered the theorem of the two right angles for each kind of

triangle, the equilateral first, then the isosceles, and lastly

the scalene, whereas the later writers stated the theorem in a

general form as follows, Hn every triangle the three interior

angles are equal to two right angles^,’ so also with the conic

1 The Greek is given also by Bret- “The proposition that the terms of a

Schneider, pp. 13, 14. proportion may be taken alternando,

2 Compare with this Aristotle, who was formerly proved separately for

says {Anal. Post. i. 5, p. 74, a. 17) numbers, lines, volumes, times, though
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sections, they regarded the so-called ‘ section of a right-angled

cone’ in the right-angled cone only, supposed to be cut by a plane

perpendicular to one side of the cone : and similarly the sections of

the obtuse-angled and acute-angled cones they exhibited only in

such cones respectively, applying to all cones cutting planes per-

pendicular to one side of the cone But afterwards Apollonius

of Perga discovered the general theorem that in every cone,

whether right or scalene, all the sections may be obtained

according to the different directions in which the cutting plane

meets the cone.” “This,” adds Eutocius, '^is what Geminus

says in the 6th Book of his General View of Mathematics

(/uiaOrjfiarcov Oecopla).” The two extracts here quoted are our

main clues to the history of geometry before Euclid. The first

gives us the names of the leading geometers, the order of their

appearance and a brief statement of their services. The second

is valuable in enabling us to guess at the style in which a

particular proposition would probably be treated at a given

date. The sources from which further details may be obtained

are generally very late in date and very meagre in information.

They often ascribe the same proposition to different persons or

different modes of proving the same proposition to the same

person, or are silent altogether about modes of proof. The early

history of Greek geometry must, therefore, be reconstructed

largely by inference, and it is obvious that to this process the

Eudemian summary and the authoritative statement of Geminus

are of the greatest assistance.

(b) Thales and the Ionic School.

83. Thales, the acknowledged founder of Greek mathe-

matics and philosophy, was born about B.C. 640 at Miletus,

the chief city of the Ionian coast, and died at the same place

it might have been proved for all of

them at once : but because these things

are not called by one name and differ

in kind, they were treated separately.

But now it is proved generally ” etc.

Hankel, pp. 114, 115. This is the

passage cited above (p. 105 n.) as

evidence that Aristotle knew the mathe-

matical value of the alphabetical sym-

bols which he introduced.
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about B.C. 512 \ He was apparently of Phoenician descent'^ but

probably not, as Diogenes relates, of Phoenician parentage, for

the names of his parents, Examius and Cleobuline, are good

enough Greek. Many authorities concur in stating that he

was, in early life at least, engaged in commerce, for which he

seems to have had great aptitude®. Aristotle illustrates this by

a tale that one winter, when the stars promised an abundant

crop of olives, Thales at once secured by contract all the oil-

presses, and made, in the following autumn, a large profit by

lending these necessary implements. It may be that he went to

Egypt for mercantile purposes, and there learnt in his leisure

the mathematical and other knowledge which he subsequently

introduced among the Greeks. According to Plutarch, he was

somewhat advanced in years {'irpecr^vrepo^) when he returned

to Miletus. According to other authorities^ he was old, or had

given up an active share in political life, when he took to those

philosophical inquiries for which he is now remembered. At
any rate the strikiug achievement which made his fame in his

own day did not occur till his later years. He announced

beforehand a solar eclipse, which in fact took place at least in

the year predicted. It happened on May 28th, 585 B.C. during

a great pitched battle between the Medes and the Lydians®.

1 The main facts of his life are given

by Diogenes Laertius (i. 1. nn. 1, 3, 6,

10, Huebner’s ed. pp. 14, 16, 17, 24),

who cites Apollodorus, as authority for

the birth of Thales in the 35th Olym-

piad, and Socrates, for his death in

the 58th.

2 Herod, i. c. 170.

3 Plutarch, Vita Solonis, c. 2, Aris-

totle, Pol. I. c. 11, p. 1259 a. Plutarch

{De Soil. Animal, p. 45 of Eeiske’s

edition) says that Thales used mules

to carry his salt to market; one of

them, having slipped in fording a

stream, found its load considerably

lightened by the melting of the salt

and afterwards several times fell in

the water purposely. To cure it of

this trick, Thales loaded it one time

with rags and sponges.

^ Pint. De plac. philos. i. c. 3.

Themistius, Oral, xxvii. p. 317. Diog.

L. I. c. 1, n. 2. Huebner’s ed. p.

14.

5 Herod, i. c. 74. Clem. Alex. Strom.

I. c. 14 (ed. Potter, p. 354). The
latter quotes Eudemus as his author-

ity. The fact that Thales predicted

the eclipse is well attested, but we do
not know with what exactitude he

specified the time of its occurrence.

He may have learnt, from Egyptian

or Chaldsean registers, that a solar

eclipse occurs at intervals of 18 years

11 days. See Bretschneider, pp. 51,

52.
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The circumstance gave additional Sclat to the prophecy, and it

was no doubt owing to this that, in the archonship of Damasias

(b.c. 585—583 b.c.), Thales was added to the list of Wise Menh
“ Thales apparently,” says Plutarch^, “ was the only one of these

whose wdsdom stepped, in speculation, beyond the limits of

practical utility : the rest acquired the name of wisdom in

politics.” It appears, nevertheless, that Thales possessed quite

as much political shrewdness and knowledge of the world and

had the same gift of epigrammatic counsel as his compeers

among the famous Seven I

84. The well-known theory of Thales on the structure of

the universe and the astronomical observations, to which he

seems to have been chiefly devoted, do not fall within the

scope of this history For the present purpose, it is necessary

only to record that five geometrical theorems are expressly

attributed to Thales and also two practical applications of

geometry. The theorems are as follows®

:

(1) The circle is bisected by its diameter.

(2) The angles at the base of an isosceles triangle are

equal. (Euc. I. 5, part 1.)

1 Diog. L. I. 1, n. 1, quoting Deme-

trius Phalereus.

2 Vit. Solonis, c. 3.

3 See, for instance, Herod, i. c. 170,

and Diog. Laert.

4 On tlie astronomy of Thales, see

the authorities collected by Bretschn.

pp. 47—49. The most copious of these

is Plutarch, De plac. philos. ii. cc. 12,

24, 28, III. cc. 10, 11. The chief ex-

tracts from Thales’ astronomical teach-

ing are
: (1) that the year is 365 days ;

(2) that the intervals between the equi-

noxes are not equal
: (3) that Ursa

Minor was a better guide for mariners

than Ursa major

:

(4) that the moon is

illuminated by the sun: (5) that the

earth is spherical.

3 Of these (1) (2) (3) and (5) rest on

the authority of Proclus {Comm, in

Enel. I. ed. Friedlein, pp. 157, 250,

299, 65), who cites Eudemus for (3)

and (5). The theorem (4) is attributed

to Thales by iiTarence from a passage

of Diogenes Laertius (i. c. 1, n. 3) who
says that Pamphila {temp. Nero) re-

lates that Thales was the first person
‘

‘ to inscribe a right-angled triangle in a

circle, ” and that he sacrificed an ox on
performing this “problem.” The same
achievement was attributed by others

to Pythagoras. Dr Allman (v. p. 170)

has the excellent note: “It may be

noticed that this remarkable property

of the circle, with which, in fact, ab-

stract geometry was inaugurated,

struck the imagination of Dante

:

‘ 0 se del mezzo cerchio far si puote

Triangol si, ch’ un retto non avesse*.”

The lines (Paradiso, c. xiii. 101—2)

are part of a description of the know-
ledge which Solomon did not choose

from God.
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(3) If two straight lines cut one another, the opposite

angles are equal. (Euc. i. 15.)

(4) The angle in a semicircle is a right angle. (Euc. iii.

31, part 1.)

(5) A triangle is determined if its base and base-angles be

given (practically Euc. i. 26).

Of these the first and third are probably cases in which

Thales relied on intuition, or as the Eudemian summary has it,

attacked the question empirically {ala-OrjTucwTepov), for, accord-

ing to Proclus (p. 299), Euclid first thought (3) worthy of

proof,” and he does not think (1) worthy of it at all, but leaves

it to be inferred from definitions 17 and 18 to Book I. The
language of Proclus also (p. 250) seems to hint that Thales

proved the proposition (2), our old friend, the Pons Asinorum,

by taking two equal isosceles triangles and applying them to one

another as in Euc. i. 4, another case of experiment. But the

two remaining theorems are obviously incapable of such treat-

ment, and must have been supported either by deduction or at

least by very wide induction. The last of them (Euc. i. 26) is

attributed to Thales by Eudemus (Proclus, p. 65), apparently on

the ground that Thales invented a mode of discovering the

distance of a ship at sea, in which the proposition was used.

In the application of this process, probably the given base w^as

a tower of known altitude, and one of the given base-angles was

the right angle which the tower forms with the shore. The
other given angle was obtained by the observer who looked at

the ship from the top of the tower It is hardly credible that,

in order to ascertain the distance of the ship, the observer should

have thought it necessary to reproduce and measure on land, in

the horizontal plane, the enormous triangle which he constructed

in imagination in a perpendicular plane over the sea. Such an

undertaking would have been so inconvenient and wearisome

as to deprive Thales’ discovery of its practical value. It is

therefore probable that Thales knew another geometrical pro-

position: viz. ‘that the sides of equiangular triangles are

proportional,’ (Euc. vi. 4.) And here no doubt we have the

/al

ogon,1 Cantor, p. 122.
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real import of those Egyptian calculations of seqt, which Ahmes
introduces as exercises in arithmetic. The seqt, or ratio, be-

tween the distance of the ship and the height of the watch-

tower is the same as that between the corresponding sides of

any small but similar triangle. The discovery, therefore, attri-

buted to Thales is probably of Egyptian origin, for it is difficult

to see what other use the Egyptians could have made of their

seqb, when found. It may nevertheless be true that the pro-

position, Euc. VI. 4, was not known, as now stated, either to

the Egyptians or to Thales. It would have been sufficient for

their purposes to know, inductively, that the seqts of equi-

angular triangles were the same. The other practical application

of geometry, attributed to Thales, depends upon the same

proposition, but is described in two forms, the one very simple,

the other more difficult. According to Pliny and Diogenes

Laertius^ (who quotes Hieronymus of Phodes, a pupil of

Aristotle, as his authority), Thales ascertained the height of

pyramids and similar edifices by measuring their shadows at

that hour of the day when a man’s shadow is of the same length

as himself. Plutarch^, however, puts into the mouth of Niloxenus

a different account of the process. ‘‘ Placing your staff at the

extremity of the shadow of the pyramid,” says he to Thales,

you made, by the impact of the sun’s rays, two triangles, and

so showed that the pyramid was to the staff as its shadow to the

staff’s shadow.” This is obviously only another calculation of

seqt, though the proportion, as stated by Plutarch, is probably

not exactly in its original form. There is no reason, now that

Ahmes’s book is well-known, to deny that Thales was acquainted

with the simple process here attributed to him. It was, however,

justifiable in Bretschneider, who knew Ahmes only from a brief

abstract^, which contained no mention of the seqt calculations, to

question Plutarch’s accuracy and to suppose that he was attri-

buting to Thales the improved methods of his own day.

85 . To infer from the knowledge which is expressly

1 Pliny, H. N. xxxvi. 17. Diog. L. ^ Dr Bircli in Lepsius’ Zeitschrift,

-j. c. 1, n. 3. referred to supra, p. 16 n.

2 Sept. Sap. Conv. 2.
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attributed to Thales what other geometrical knowledge he

must have had is a peculiarly fascinating inquiry. It has been

already suggested that he knew, in some form, the theorem

Eucl. VI. 4. To this Dr Allman adds also two other inferences.

If, he argues, Thales knew that the angle in a semicircle is a

right angle, he must have known also that Hhe interior angles

of a triangle are equal to two right angles’ (Euclid I. 32, pt. 2).

He infers this, not from the fact that Euclid uses the proposition

I. 32, in the proof of ill. 31, pt. 1,^ but in another way.

Thales knew that the angle in a semicircle is a right angle : if he

had then joined the apex of the triangle containing that right

angle with the centre of the circle, he would -have obtained two

isosceles triangles, in which, as he also knew, the angles at the

base are equal. Hence, he could not have failed to see that the

interior angles of a right-angled triangle were equal to two

right angles, and since any triangle may be divided into two

right angled triangles, the same proposition is true of

every triangle. It is justifiable, no doubt, to ascribe so much
intelligence to Thales, but it is another matter to attribute to

him a particular piece of knowledge and a particular method of

proof: on the same plan, Thales might be held to have known
the first six books of Euclid. It will be remembered that

Geminus, in the extract quoted above, attributes to ^'the

ancients” {ol TraXacol) the knowledge of the proposition that

the interior angles of a triangle are equal to two right angles. It

may be conceded that he alludes here to Thales among others,

but it is also to be borne in mind that he says that this proposi-

tion was separately proved for the different classes of triangles.

Hence Dr Allman suggests, as an alternative, that the theorem

was arrived at from inspection of Egyptian floors paved with

tiles of the form of equilateral triangles, or squares, or hexagons

^

1 There would be two objections at

least to such an inference, viz. that

Euclid I. 32 contains two propositions,

of which only the first, which is not

the prop, in question, is used in in.

31 : and also that Euclid i. 32 is said

by Proclus (p. 379) to have been

proved almost as it stands by the Py-

thagoreans. Cantor, however (p. 120),

is inclined to attribute to Thales

Euclid’s proof (or something very like

it) of III. 31.

2 Proclus, p. 305, attributes to the

Pythagoreans the theorem that only

three regular polygons, the equilateral

triangle, the square and the hexagon,
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If, for instance, Thales observed that six equilateral triangles

could be placed round a common vertex, he would also notice

that six equal angles make up four right angles, and therefore

the angles of each equilateral triangle are equal to two right-

angles. Hankel (pp. 95, 96) suggests a similar theory, which

is adopted also by Cantor (pp. 120—121), with the addition

that the scalene triangle was divided into two right-angled

triangles, each of which was considered as half a rectangle. It

seems needless to dwell further on this proposition.

86 ,
Hr Allman, however, makes a second inference of a far

bolder character. He converts the theorem that the angle in a

semicircle is a right angle into a theorem that, if on a given

straight line as base, there be described any number of triangles

each having a right angle at the vertex, then the locus of their

vertices is the circumference of a circle described on the given

base as diameter, and attributes to Thales, therefore, the

conception of geometrical loci. If Thales proved the first

theorem empirically, by constructing a great number of right-

angled triangles on the same base, no doubt the notion of a

locus may have occurred to him : but what becomes then of

that deductive, that essentially Greek character which Thales is

always said to have imparted to Egyptian geometry?^ There

will not be left a single theorem, attributed to Thales, which

he is not likely to have discovered by inspection or inductively.

He may, no doubt, have arrived at any theorem in two w^ays, at

first inductively or by inspection, and later also by a formal

deductive process, but there is no available evidence on this

matter. If he used deduction only for this particular theorem,

he would probably not have conceived a locus. If he used

induction only, he might have conceived a locus, but there

would have been no great merit in the conception.

Of speculation in this style there is no end, and there is

hardly a single Greek geometer who is not the subject of it. A

can be placed about a point so as to fill ^ The Eudemian summary expressly

a space, but Dr Allman (p. 169 note) says that Thales “attacked some

supposes, no doubt rightly, that the questions in their general form” {Kado-

Egyptians habitually used these figures XiKWTepov).

for tiles.
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mathematician, writing for mathematicians, is perhaps entitled,

and may even be required, to fill up with his own opinions the

gaps in his evidence. But his theories, however ingenious, are

necessarily of such a kind that even a non-mathematical reader

can see that they are, for the most part, imaginary, and a

mathematician will think he can make better for himself. A
history, like this, of which the utility will no doubt vary as

the brevity, had best omit long and inconclusive discussions.

Suffice it then to say, of Thales, that he certainly introduced geo-

metry to the Greeks, that he probably improved upon Egyptian

geometry by teaching more particular!}^ of lines than of areas,

and by giving deductive instead of inductive proofs, and

that at any rate he formed a school which derived from him its

subjects and methods of inquiry, its belief in the stability of

natural laws, its tradition of the beauty and utility of the

intellectual lifek

87 . The Eudemian summary names, immediately after

Thales, Mamercus^ the brother of the poet Stesichorus, as

one of the founders of Greek geometry. Nothing more is known

of this person, and his name itself is exceedingly doubtful.

Stesichorus lived in Sicily, and died about 560 B.c. Mamercus

nevertheless may have been a pupil of Thales, for it is difficult

to imagine how he could have learnt any geometry in Sicily

at that time. However this may be, Thales undoubtedly

had some pupils (e.g. Mandryatus of Priene^) whom the

Eudemian summary does not mention. Another pupil of

Thales, Anaximander of Miletus, became very famous. He
was born about 611 B.c., and died about 545 B.c. ^ He also,

like Thales, devoted himself mainly to physical speculations

and to astronomy. It has been already mentioned that he first

introduced the gnomon and the polos or sundial into Greece

^

1 Thales apparently composed some

astronomical treatise in verse, but the

authorities on his writings are con-

flicting. See Bretschneider § 39, pp.

54, 55.

2 Apuleius, Florida, iv. n. 18, ed.

Hildebr. p. 88, ed. Delphin. p. 817.

Bretschneider, pp. 53, 56.

G. G. M.

3 Diog. Laert. ii. c. 1.

4 The gnomon was an upright staff

placed in the centre of three concentric

circles, so that at the summer solstice

its shadow at noon just reached the inner

circle, at the equinoxes the middle, at

the winter solstice the outer. After-

wards in places, of which the meridian

10
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Simplicius also relates {in Ar. de Goelo, ed. Brandis, p. 497 a),

on the authority of Eudemus, that Anaximander ascertained

the relative sizes and distances of the planets: and Diogenes

states that he first constructed terrestrial and celestial globesh

These facts favour a presumption that Anaximander also was

greatly interested in geometry, and Suidas, in particular, attri-

butes to him a work entitled v'7TOTV7rcoai<; riy? yecofierpids,

which would seem to mean ‘ a collection of figures illustrative of

geometry.’ Pliny (H. N. II. c. 76) as was mentioned above

(p. 67 n.), attributes the introduction of the gnomon to the

younger philosopher, Anaximenes^ who lived B.c. 570—499, and

there may be some confusion between him and Anaximander.

Nothing is known of any geometrical work by Anaximenes, and

the same might be said of the more famous Anaxagoras of

Clazomenae^ (b. c. 500—428) were it not that the Eudemian

summary expressly mentions him as a geometer; that Plutarch

{de exilio, c. 17), relates that when in prison he wrote a treatise

on quadrature of the circle, and that Vitruvius (vii. praef.),

ascribes to him a work on perspective.

88. We may add finally to the Ionic school, with which he

seems to have had most affinity, ^nopides of Chios, a

contemporary perhaps of Anaxagoras, or according to the

Eudemian summary, a little later. Of him Diodorus, as quoted

above (p. 131), relates that he studied in Egypt. He was certainly

devoted chiefly to astronomy
;
and ^lian ( Var. Hist. x. 7),

says that he invented a “great year” of 59 years, that is, a

period at the end of which, according to his observations, the

lunar and solar years would exactly coincide®. He was however

interested in geometry, and Proclus^ attributes to him the

was known, the circles were omitted

and three spots, marked on the me-

ridian line, were substituted. The

polos can hardly have been similar

to our sundials, but was probably a

staff placed in the centre of six con-

centric circles, such that every two

hours the shadow of the staff passed

from one circle to the next. Bret-

schneider, p. 60. Cantor, p. 92.

^ His fellow-townsman, Hecataeus,

made about the same time the first

map.
2 Anaxagoras lived, in his later years,

with Pericles at Athens.

3 Censorinus c. 18, says that a

“great year” of this length was attri-

buted also to Philolaus, the Pythago-

rean. See the note to ^Elian in Gro-

novius’ ed. ii. p. 655.

Ed. Friedlein, pp. 283 and 333.

Eudemus is cited in the latter passage.
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solution of two problems, ‘To draw a straight line perpendicular

to a given straight line of unlimited length, from a given point

without it’ (Euclid I. 12.) and ‘At a given point in a given

straight line to make a rectilineal angle equal to a given

rectilineal angle’ (Euclid I. 23). On the first of these, Proclus’

note is curious and worth quotiug. He says, “ (Enopides first

invented this problem, thinking it useful for astronomy. He
calls the perpendicular (fcdOeTo<;) in the antique manner a

‘gnomon,’ because the gnomon is at right angles (tt^o? op^d?)

to the horizon, and the line drawn is at right angles to the

given line, differing in plane only {rrj (jy;e<7et), but not in

principle (/card to vTroKeL/jbevov)”

It is plain enough from these scanty facts and from their

scantiness, that the Ionic school did not, in nearly two hundred

years, do anything like what might have been expected for

the advancement of geometry. It introduced the study, kept*

alive, and by working at astronomy, opened up a vast field c

research, to which geometry soon became essential. The

progress of geometry itself, however, was due mainly to the

Pythagoreans in Italy.

(c.) The Pythagoreans.

89. Pythagoras, the son of Mnesarchus, was born in Samos,

probably about 580 B.c. The date of his birth, however, and

the other facts of his biography are the subject of disputes,

which, owing to the nature of the evidence, can never be satis-

factorily settled. The following summary statement perhaps

excludes most of the very doubtful matter. Pythagoras w^^;^

at first the pupil of Pherecydes of Syros^ but afterwards visitq^^

Thales^, and was by him incited to study in Egypt, particularity

at Memphis or Diospolis (Thebes). In pursuance of this

1 Pherecydes is said (Suidas, s. v.

Pliny H. N. vii. 56) to have been the

first writer of prose. He is also said

•^to have introduced the doctrine of

petempsychosis, which Pythagoras a-

dopted. See Ritter and Preller, Hist.

Philos, c. II. § 92.

2 lamblichus {Vita Pytli. c. 2) is the

authority for this statement, which is

not intrinsically improbable.

10—2
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advice, Pythagoras went to Egypt and stayed there a long time,

perhaps 22 years. He may subsequently have visited Babylon \

He returned ultimately to Samos and attempted to found a

school there, but without success. For this reason or because

of some political disturbance he emigrated to Croton in S.

Italy ^ The colonies in Magna Graecia, of which Sybaris was
the chief, were at this time more vrealthy and important than

the mother country, and a very considerable commerce was

carried on between them and the Ionian coast. Pythagoras,

therefore, did not arrive at Croton among a strange and uncouth

people, and was able soon to gain a leading position among his

fellow townsmen. Among the noblest and best of these he

formed a brotherhood, the members of which were united by
common philosophical beliefs and pursuits. They were, however,

bound by oath not to divulge the tenets and discoveries of

Aiir school, and it is due to this fact that the historian of

^lilosophy is now obliged to speak of ‘the Pythagoreans’ as a

jody and is unable to identify the author of any particular

portion of their creed. This Masonic society^, so to say, soon

spread into other cities of Magna Graecia, and as it was capable

of taking united action on political questions, especially on the

side of the aristocrats, from whom its members were chiefly

drawn, it became the object of popular suspicion and hatred'^.

Ultimately, the Pythagoreans of Croton, their leader with

them, were attacked by the plebeian party : Pythagoras fled

first to Tarentum and then to Metapontum, and was there

murdered in another popular outbreak about 500 B.c.

90 . It has been already stated that, by writers of other

schools, Pythagorean doctrines are generally attributed to “the

IL thagoreans ” and not to Pythagoras himself. On the other

wmd, the Pythagoreans were wont to attribute all their tenets

Jo their master. Auto? ecpa, ipse dixit, was the formula which

secured acceptance for any doctrine however remote it may

1 Strabo, xiv. i. 16.

2 Diog. Laert. viii. 3. Cicero, De

Rep. II. 15.

^ It contained two orders, the /xad-rj-

IxaTLKoi and the aKovaixarLKoi, the ‘re-

searchers’ or ‘mathematicians’ and the

‘listeners.’ The former apparently

were communists. lamblich. V. P.

81 ;
Porph. V. P. 37.

^ Polybius, Hist. ii. 29.
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the teaching of the school seems to have been traditional and

founded on no text-books, until the wide dispersion of its

members made it desirable that some record should be secured.

Philolaus, a contemporary of Plato, is generally credited with the

first publication of a detailed Pythagorean philosophy \ His

work is lost, save a few very brief fragments (not undoubted)

preserved by Stobaeus and similar compilers. In default of

(
this, we are compelled to rely on incidental remarks or mere

j

allusions of the earlier Greek writers, or else on histories

f obviously uncritical of a very late date. Now these are pre-

cisely the kind of authorities who would naturally omit to

mention discoveries of Pythagoras and his school in, geometry.

Aristotle, for instance, had no occasion to discuss geometrical

\ details to which he did not, though the Pythagoreans did,

1 attach any profound significance. To lamblichus, on the other

1 hand, geometry was not in itself interesting, or, if it was, the

^
geometry of his day had so far outstripped the Pythagorean

that the latter would have seemed childish by comparison.

Hence it is that, though the evidence is abundant that

Pythagoras really made geometry the Greek science 'par ex-

cellence, yet very few particular inventions can be attributed to

him or his immediate followers.

91 . It has been already stated (see above pp. 67—72) how
it was that Pythagoras came to attach so much importance to

geometry, and how closely he connected it with arithmetic. It

will be remembered also that the geometry of Ahmes is ex-

hibited only as leading to arithmetical problems, and we may
suppose therefore that Pythagoras was profoundly influenced by
his Egyptian teaching. We shall also be prepared to find that

the Pythagorean geometry, like the Egyptian, is concerned,

more than that of Thales, wdth the relations of areas and
volumes, and is not largely concerned with those relations of

lines which do not admit of, or do not readily suggest, arith-

1 Lucian, Pro Lapsu in Salut. c. 5, avrov). Diog. Laert. vm. 15, says

mentions that Pythagoras had not “before Philolaus it was impossiblie

thought fit to leave any authoritative to learn any Pythagorean dogma.”
writings {/xrjdh idcov KaraXiirciv tQv /
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metical expression. Inis being premiseu, n remaina ouij i..

set out in order such doctrines, of geometrical interest, and such

special discoveries in geometry as are attributed to Pythagoras

or the Pythagoreans.

According to Aristotle^ ‘'the Pythagoreans first applied them-

selves to mathematics, a science which they improved
;
and pene-

trated with it, they fancied that the principles of mathematics

were the principles of all things.” Proclus^ says expressly that

the specialised meaning of ‘mathematics’ (fiaOrj/iaTa) was first

used by the Pythagoreans. The Eudemian summary says that

Pythagoras changed the study of geometry into the form of a

liberal education, for he examined its principles to the bottom,

an^ investigated its theorems in an immaterial and intellectual

manner {dvXm Kal voepw^), Diogenes Laertius® states, on the

authority of Favorinus, that Pythagoras “used definitions, on

account of the mathematical matter of his subject.” This

perhaps was the first step towards that systematization of

geometry which Eudemus ascribes to him. The following

details are also preserved L*

(1) The Pythagoreans define a point {a-r^pbelov) as “unity

having position.” (Proclus, ed. Friedlein, p. 95.)

(2) They considered a point as analogous to the monad, a

line to the duad, a superficies to the triad, and a body to the

tetrad. {Ih, p. 97.)

(3) They showed that the plane about a point is completely

filled by six equilateral triangles, four squares or three regular

hexagons. (76. p. 305.)

(4) They first, according to Eudemus, proved generally

that the interior angles of a triangle are equal to two right-

angles. {Ih. p. 379.)®

1 Metaph. i. 5, 985.

2 Friedlein’s ed. p. 45.

5 VIII. 25.

^ All the following quotations are in

Bretsclineider, pp. 67—91. They are

more neatly arranged by Dr Allman.

® The Pythagorean proof, according

to Eudemus, is as follows. Let ABC
be a triangle. Through A draw DE

parallel to BC. Then the alternate

J> A E
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(5) They also, according to Eudemus, invented the problems

concerning the application of areas, including the cases of defect

and excess (vTrep/SoXTj) as in Eiicl. VI. 28, 29. {lb.

p. 419, Comm, on Eucl. i. 44 h See above p. 84 n.)

(6) Pythagoras sacrificed an ox on solving the problem

how to construct a figure equal to one“ and similar to another

given figure. (Euclid il. 14, VI. 25) ^

(7) Pythagoras, according to Eudemus, discovered the con-

struction of the regular solids®. (Proclus, p. 65).

(8) The triple interwoven triangle, the

pentagram-star, (to TpnrXovv rplycovov, to Be

dW-^Xcov, TO Trevrdypapbpbov) was used as a

badge or symbol of recognition by the Pythago-

reans, and was called by them Health {vyieea).

(Lucian, Pro Lapsu, c. 5, Schol. in Ar. Nub. 611)h

(9) Pythagoras discovered the theorem of the three squares,

Euclid I. 47. (Proclus, p. 426)®.

ABC, EAG to ACB. Add the angle

BAC. Then the three angles BAB,
BAG, CAE, that is, BAB, BAE, that

is, two right angles are equal to the

three angles of the triangle. The re-

dundant explanation in the last sen-

tence is curious. The text is given by

BretSchneider, p. 78.

1

This passage will, for the sake of

some other matter contained in it, be

quoted later on. The statement is con-

firmed by Plutarch {Non posse siiav.

vivi sec. Epicur. c. 11), who says, “ Py-

thagoras, according to Apollodorus,

sacrificed an ox on completing the

figure... either for the proposition con-

cerning the hypotenuse, that its square

is equal to those of the sides contain-

ing the right angle, or else the pro-

blem about application of an area.”

The texts have wept rod rijs trapa-

PoX-ps, for which Bretschneider (p. 79,

n.) proposes, evidently rightly, irepl

TT7 S TOO x^p'^-ov TrapapoXrjS. The text is

sometimes translated “on the area of

the parabola,” which involves a gross

anachronism.

2 Plutarch, Quaest. Conv. viii. 2,

c. 4.

3 According to lamblichus {Vita

Pyth. c. 18, s. 88) Hippasus was
drowned for divulging the knowledge

of “the sphere with the twelve penta-

gons” (i.e. the inscribed ordinate dode-

cahedron) “ for he took the glory as

discoverer, whereas everything belong-

ed to Him {etuai 8^ Traura eKeivov) for so

they call Pythagoras.”

^ See Chasles, p. 477, sqq. This

Pytliagoraefigura was used through the

middle ages, and was regarded even by

Paracelsus as a symbol of he' ’ is

the drudenfuss of Goethe’Mbe ’ v

Km 1 .. ^ X. no \° The oldest authcvX ov

Vitruvius, ix. pref. ed Fr^^

attested also by 'P]Adhort.

Diog. L. VIII. 11. 21, fiuoiven.

J6.
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(10) Pythagoras used to say that of all solids the sphere

was the most beautiful
;

of all plane figures, the circle. (Diog.

Laert. vili. 19.)

(11) The Pythagoreans are said to have solved the quadra-

ture of the circle. (lamhlichus quoted by Simplicius in Ar. Phys.

185, a, 16. Ed. Brandis, p. 327, h.)

(12) The Pythagoreans, as has been already stated {supra

p. 70) were largely occupied with the study of proportion,

doubtless not in arithmetic only but in geometry

\

(13) From the Pythagorean use of ‘gnomon’ as a desig-

nation of those numbers, which, when added to a square

number, make a square total, it is evident that the Pythagoreans

were accustomed to consider and use the gnomon in geometry I

92 . It will be seen at once that all this knowledge can by

no means be attributed to Pythagoras himself or to his earliest

siicc'^^sors. There must have been, notwithstanding the en-

thusiasm and ability of the school, a slow progress from em-

pirical to reasoned solutions, from the diffuse treatment of

special cases to the concise treatment of one general case. But

we are hopelessly in the dark as to when and how this progress

was effected. It is probable, indeed, that much of it was not

effected inside the Pythagorean school at all, but that later writers

ascribe to the Pythagoreans theorems which they first proved for

one special case but which some Academic geometer afterwards

proved generally. : A Pythagorean, for instance, may very well

have solved Eucl. Ii. 14, without going so far as vi. 25. Some
statements also,in themselves beyond doubt,maylead to veryplau-

sible but erroneous inferences. For instance, if Pythagoras was

1 Proclus (ed. Friedlein, p. 43) says

that Eratosthenes regarded proportion

as ‘the bond of mathematics,’ and says

elsewhere that the 5th Book of Euclid

is ' moren to geometry, arithmetic,

1 ® Thin a word, to all mathe-

to Eudemnoche, Untersuch. iiber

be a trianglt^’Zws zu Eucl. Elem.

\entioned before

ion, that Bret-

schneider p. 89, § 71, conclusively

shews that Montucla (i. p. 117) is

wrong in attributing to the Pythagor-

eans any investigations in isoperi-

metry. What Diogenes Laertius (viir.

c. 1. n. 19) says is stated above (10).

He does not say that Pythagoras taught

that the circle is the greatest among
figures of equal periphery, and the

sphere among solids of equal super-

lie ios.
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acquainted (as no doubt he was) with the regular solids, he was

acquainted also with the regular pentagon. This fact, together

with the form of the pentagram and together with the directions

as to dividing figures into triangles which Plato puts into

the mouth of the Pythagorean Timaeus\ suggests that Pytha-

goras constructed the regular pentagon in the manner of

Euclid IV. 11. But Euclid iv. 11 is founded on iv. 10, which

is founded on ii. 11, and the Eudemian summary, the most

authoritative of all our historical accounts of ancient geometry,

says that Plato invented the learning on the subject of cutting

a line in extreme and mean ratio. It can hardly, therefore,

serve any useful purpose to criticise minutely a whole body of

geometrical teaching much of which is not properly authen-

ticated, and which, if it be correctly ascribed to the Pythagorean

school, must belong to very different datesl It is sufficient to

say, generally, that the Pythagoreans seem at a very early time

to have been masters of most of the geometry contained in the

first two books of Euclid, and that they knew some propositions

of the 5th and 6th books. To them also is probably due the

introduction of definitions of some kind and the use of orderly

deductive proofs in geometry. Further, just as Aristoxenus

tells us that they raised arithmetic above the needs of mer-

chants, so the Eudemian summary tells us that they made
geometry 'a liberal education’; and other writers record as one

of their proverbial maxims, “A figure and a stride : not a figure

and sixpence gained^”.

93 . There are, however, two portions of the Pythagorean

geometry which have provoked interesting comments. One
is the construction of the five regular solids, the other is the

Pythagorean theorem, Euclid i. 47.

Timaeus, in the dialogue of Plato above cited, explains that

every rectilineal figure is made up of triangles, and thot every

1 Tim. c. 20, 107. See next par.

2 A very curious instance of the

distracting nature of the evidence a-

bout the Pythagoreans is furnished by
Diogenes Laertius (viii. 83), who says

that Archytas, one of the last of the

school, “first found the cube’^O^S no
^ crxctjua kuI /3a^a, dXX’ ov of the

rpLia^oXop. Proclus, ed Pr

84. lamblichus, Adhort. .

Symb. XXXVI. c. 21, quo^^'^^^*

Allman, v. p. 206.
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triangle may be divided into two right-angled triangles, either

isosceles or scalene. ‘‘Of such scalene triangles the most

beautiful is that out of the doubling of which an equilateral

arises, or in which the square of the greater perpendicular is

three times that of the less, or in which the less is half the

hypotenuse. But two or four right-angled isosceles triangles,

properly put together, form the square : two or six of the most

beautiful scalene right-angled triangles form the equilateral

triangle, and out of these two figures arise the solids Avhich

correspond with the four elements of the real world, the tetra-

hedron, octahedron, icosahedron and the cubeh” Of these solids,

the tetrahedron, octahedron and cube must have been familiar to

a traveller who had lived in Egypt
;
on the construction of the

other two. Dr Allman has the following remarks : “In the

formation of the tetrahedron, three, and in that of the octa-

hedron, four, equal equilateral triangles had been placed with a

common vertex and adjacent sides coincident, and it was known

too that if six such triangles were placed round a common
vertex with their adjacent sides coincident, they would lie in a

plane, and that, therefore, no solid could be formed in that

manner from them. . It remained then to try whether five such

equilateral triangles could be placed at a common vertex in like

manner : on trial it would be found that they could be so

placed and that their bases would form a regular pentagon.

The existence of a regular pentagon would thus be known (sic).

It was also known from the formation of the cube that three

squares could be placed in a similar way with a common vertex

;

and that, further, if three equal and regular hexagons were

placed round a point as common vertex wdth adjacent sides

coincident, they would form a plane. It remained then only to

try whether three equal regular pentagons could be placed with

a common vertex and in a similar way: this on trial would be

found possible and would lead to the construction of the regular

fo Yedron which was the regular solid last arrived at.” It

be a:)e added that there is no reason to suppose that the

'eans knew that there are, in fact, no other regular

e these.

1 The dodecahedron represented the universe itself.
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94 .
The famous proposition, Euclid i. 47, has always been

known as the theorem of Pythagoras. It will be remembered

that the converse of this (Eucl. i. 48) was known to the

Egyptians and to other nations, at a very early date, in the case

in which the sides of the triangle are to one another as 3:4:5,

and that Pythagoras extended it to cases in which the sides are

to one another as + 1 : 2n^ + + 2i^ + Ih The first

proposition also may have been known to the Egyptians in the

particular case where the right-angled triangle is isosceles. It

would of course be at once suggested by a floor paved with

tiles in the form of isosceles right-angled

triangles. But the general proof is at-

tributed to Pythagoras; and Proclussays

expressly (p. 426) that the form of

Euclid I. 47 (as well as Euclid vi. 31)

is due to Euclid himself. Hence Bret-

schneider (p. 82), after Camerer^, proposes

as a possible restoration of the original

proof, the following.^If a straight line

be divided into any two parts a and h, then the square on the
whole line is equal to + P with the two complementary
rectangles ah. Draw the diagonals c of these rectangles, and
dispose the four triangles so formed about the square in the

manner shown in the second figure. There is thus left, in the
middle of the square, a figure which is obviously equal to
a' 4- 61 Upon this Hankel (p. 98) remarks that “it has no
specifically Greek colouring, and reminds us rather of the

1 See above p. 71. 2 Euclidis Elem. i. p. 444, and reff. there given.



156 GREEK GEOMETRY TO EUCLID.

Indian styled” This criticism will serve to introduce an

Indian proof of the same theorem, taken from the Vija-ganita

(‘Root-calculations’) of Bhaskara, who was born A. D. 1114^

Here a square is constructed on the

hypotenuse and the original triangle

repeated four times, is disposed round

it as in Bretschneider’s proof. The

square left in the middle is that of the

difference between the two perpendicu-

lars. Bhaskara merely draws the figure

and adds ‘Look!’ without thinking it

necessary to add that if = 4 + (<^2 ~ then =

A proof of precisely the same kind is given, two hundred years

earlier, by the Arab Abu ’1 Wafa (a.d. 940—998), who trans-

lated Diophantus^ It would seem also that the Chinese had

a similar proof. The passage on which this presumption is

founded occurs in a book called the Tcheou pei^ or ‘signal in a

circle,’ of which the first part, containing the passage, is

attributed to 1100 R.c. It may not be so early as this, but

it certainly existed and was the subject of a commentary in the

2nd century after Christ. Here, apparently, the same figure

as Bhaskara’s is drawn and is named ‘the Rope figure,’ as

though it were intended to ex-

plain the practice of some Chinese

Harpedonaptes. Another proof

given by Bhaskara, in the same

place, is also worth quoting. A
perpendicular is drawn from the

vertex to the hypotenuse, dividing the triangle into two

1 Dr Allman (p. 193) adopts tins

criticism, but accepts Bretschneider’s

proof and attributes it to the Egyptians.

See, however, the passage from the

Meno, cited below p. 174.

2 Colebrooke, Algebra etc. of Brah-

megupta and Bhaskara, 1817, p. 220

—

222, § 146. Haukel, p. 209. Cantor

p. 557.

^ See Cantor, pp. 637, 639, quoting

Woepcke in Journal Asiat. 1855, pp.

346, 350—351 (Feb. and March).

^ Cantor, pp. 579—581, quoting E.

Biot in Journ. Asiat. pp. 593—639, for

June 1841. Cantor’s restoration of

the figure is founded, conjecturally, on

Biot’s description of it, which is by no

means clear.



GKEEK GEOMETRY TO ii^uCLID. 1 -^/

others similar to it. Then in the figure (if h he the original

c "h c h
hypotenuse) ^ 7’ ^ ~

» whence it follows that
tl Cj Ih Cg

h {h^ + + c^, Hankel remarks that this proof was

revived in the West by Wallis

^

95 . It is not to be supposed that when the Pythagorean

brother-hood was for political reasons broken up, the Pythagorean

philosophy disappeared also. On the contrary^ the school con-

tinued to flourish for at least two centuries more. Tarentum

seems to have been its head^quarters, but it seems also to have

sent out occasional missionary expeditions into Greece. Its

habit of secrecy prevents the possibility of naming its earliest

leaders. The most celebrated of its earliest disciples was

Epicharmus, the founder in Sicily of Greek comedy (cir. B.c. 480).

Considerably later Philolaus wrote his book, and thus the

Pythagorean doctrines became accessible to the public. Two
other disciples, Archippus and Lysis, are also reported to have

written text-books of their philosophy, and by the time of

Plato the Pythagorean teaching seems to have been well

known. Simmias of Thebes, the companion of Socrates, says

in Plato’s Phaedo (61 d) that he had himself heard Philolaus in

Thebes. Most of the Sophists also, who introduced geometry

into Athens, came from Sicily and it is said of some of them
and may be presumed of others that they acquired their

knowledge of the science from Pythagorean sources. So also,

no doubt, did Plato himself, who bought a copy of Philolaus,

and who, in Sicily, studied with Archytas and Timaeus of

Locri^. This Archytas was a mathematician of great celebrity.

The Eudemian summary mentions him without attributing to

him any particular discovery, but a good deal is known of him
from other sources I He was a leading politician and chief of

the Pythagorean school in Tarentum. According to Diogenes

^ De Sect. Ang. c. vi. in Wallis Op.

Math. (1693), Vol. ii. Hankel, p. 209.

Cantor, p. 557. A collection of proofs

of Euclid I. 47 was made by J^J.

Hofmann. Der Pythagorische Lehr-

satz. Mainz (2nd ed.) 1821. See the

note in Todhunter’s Euclid.

2 Cic. Be Rep. i. 10, 16.

3 See the authorities collected in

Ritter and Preller, Hist. Philos, c. ii.

sec. 100, n. d. Cantor, p. 203.
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Laertius (viil. 83) lie first applied geometry to medianics and

handled the latter subject methodically, and used mechanical

contrivances in the construction of geometrical figures. A very

ingenious solution of the problem ‘to double a cube’ is attribu-

ted to him^ and will be cited below (pp. 181, 182). He also is said

to have defined the three chief kinds of proportion. Horace in a

well-known ode (i. 28) describes him as mavis ac terrae nu~

meroque carentis arenae mensor, from which it might be inferred

that he attempted some of the problems which Archimedes

treats in his Arenavius. Gellius (x. 12) ascribes to Archytas

also the invention of a mechanical dove

From this it will be seen that the later Pythagoreans were

worthily maintaining the traditions which they had received

from their master. But in the meantime the Persian Wars had

made Athens by far the wealthiest and most brilliant city of

Greece. To her resorted, from all parts, those men who had

something to teach and were not too proud to make a living by

teaching it. Among such there were no Pythagoreans, and thus

it is that the history of geometry must leave Italy and the Pytha-

gorean school for Athens and the Sophists and the Academy.

96 . Two schools of Greek philosophy, founded early in the

5th century B.c. remain yet to be mentioned. In Sicily

Xenophanes of Colophon had formed a school which after-

wards made its head-quarters at Elea in Italy. Here Parme-

nides, his pupil Zeno and Melissus of Samos instituted their

famous inquiries into the inconceivable. They denied the in-

finite divisibility of time and space and illustrated their position

by such paradoxes as that concerning Achilles and the tortoise*,

1 Eutocius, Comm, in Archim. de

Sph. et Cyl. and Diog. L. loc. cit.

The method of Archytas contains the

first example of a curve of double cur-

vature.

2 Poggendorff, Gesch. der Pkysik, p.

12, compares this with the automatic

eagle made by Regiomontanus in 1489

to greet the Emperor Maximilian I. on

his entry into Nuremberg. Young, in

his lectures (xx. p. 182) ascribes to

Archytas the invention of the pulley

and screw, but I have seen no authority

for this statement.

^ It will be remembered that Zeno

maintained that Achilles could never

overtake a tortoise, if the tortoise had

any start. For, supposing the tortoise

to take 100 yards start and Achilles to

run 10 times as fast as the tortoise,

when the former has covered the 100

yards, the tortoise has run 10 yards,
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the heap of corn etc. The doubt and difficulty into which their

arguments led the early mathematicians were, no doubt, the

cause of the banishment of infinity from Greek mathematical

terms and conceptions \ Both Parmenides and Zeno came to

Athens at a Panathenaic festival about 450 B.C. and were

heard by the youthful Socrates.

Somewhat later Leucippus of Miletus, a disciple of Zeno,

founded the Atomistic school, of which, before Epicurus,

Democritus, who lived at Abdera in Thrace, became the most

famous professor. Democritus at least was a very ardent and

successful geometer. His boast that he was the equal of the

Egyptian hmyedonaptae has been already cited from Clemens

Alexandrinus. Diogenes Laertius^ says that he was a pupil of

Anaxagoras as well as of Leucippus, that he was an admirer of

the Pythagoreans and intimate with Philolaus, and that he

wrote mathematical works on geometry, on numbers, on per-

spective (d/cTcvoypa(l)t7jfi, another in two books on incommen-

surable lines and (?) solids (irepl dXoycov ypapupudv fcal vaardov yS'),

and another 'on the difference of the gnomon or the contact of

the circle and sphere’ {yrepl ^Lat^oprj^ yvctipLovo<i rj irepl

kvkXov /cal (T(f>alp'r]d). It is impossible to say what these titles

mean. It appears also from Plutarch^, that Democritus was

interested in the cone and raised a question, of the Eleatic kind,

as to the infinitesimal gradations in its slope. The life of

Democritus is generally said to fall between 460 and 370 B.C.

Now though the history of geometry, after about 450 B.C.,

can be traced with any definiteness only at Athens, yet it is

plain that the progress of the science was due to contributions

from many other places. Throughout Hellas, in Ionia, in

Sicily, Italy, at Athens, at Abdera far away in Thrace, there

were men who were working earnestly at the formation of rules

for exact thinking or at the exemplification of such rules in

and when Achilles has covered this,

the tortoise is a yard ahead and so on.

Coleridge’s answer to thisparadox is dis-

cussed by Mr S. Hodgson in Mind, xix.

(July, 1880).

^ See esp. Hankel, p. 115 sqq.

2 Diog. L. IX. 7, 47.

3 Comp. Vitruvius Arch. vii. praef.

^ De Comm. Not. adv. Stoic. 39, § 3.

Allman in Hermathena. vii. p. 208.

The question was whether, if a cone

be cut by a plane parallel and infinitely

near to its base, the conic section so

exposed was equal to the base or not.
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geometry. It is sufficient only to remark the birthplaces of the

philosophers and teachers of this time to see how close an

intellectual communion was maintained between the most

widely separated cities.

(d.) The Sophists.

97 . It was in the Second Persian War, and at the battle

of Salamis in particular (b.c. 480), that Athens discovered her

vocation to be a maritime power, and that Hellas perceived that

a strong fleet was the best protection against any future in-

vasion. For this reason, a joint fleet was during many years

kept up by Athens and the islands and cities of the Archipelago,

but as Persia showed no sign of moving and the islands found

the fleet a serious burden on their resources, a league was

formed on the terms that the islands should pay tribute to

Athens and Athens should find the ships. It soon followed

that the tribute was rigorously exacted but the fleet was not

maintained. Immense sums were poured yearly into the

Athenian treasury and were spent by Pericles in the adornment

of Athens. In the meantime also Athens was become a great

commercial city with a large carrj/ing trade, and petty wars in

various parts of the Levant filled her streets and markets with

captive slaves. Thus she became the richest and most beautiful

city in the world. Her citizens were, for the most part, well-

to-do and enjoyed an unexampled amount of leisure. The

constitution of Athens, moreover, compelled every man to be

more or less a politician, and opened a splendid career to any

citizen who could but once make a successful speech in the

ecclesia. Litigation was rife and actions were conducted always

by the parties in person. Hence there arose, among the

wealthy and ambitious youth, a strong desire to cultivate

rhetoric and any other branches of knowledge which could

conduce to correct reasoning or successful disputation. The

demand was met by the necessary supply. Corax and Tisias

in Sicily, had laid the foundations of the rhetorical art and

from Sicily and elsewhere there came to Athens a multitude of
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teachers, calling themselves and called by others, '‘Sophists.”

Their business was to teach, for pay, rhetoric principally, but

some of them added also geometry, astronomy, philosophy as

necessary ingredients of a liberal education. The most famous

of them were Protagoras of Abdera, Hippias of Elis, Polus of

Agrigentum, Gorgias of Leontini, Prodicus of Geos, Licymnius

of Sicily, Alcidamas of Elaea in Aeolis, Theodorus of Byzantium,

Thrasymachus of Chalcedon, Hippocrates of Chios. Physicists

of the old school, Anaxagoras, Diogenes of Apollonia in Crete,

Diagoras of Melos, came also but were persecuted by charges of

impiety and driven away. Of the whole army of Sophists, two

only seem to have been Athenians born, namely Antiphon and

Melon, the astronomer^ who introduced the Metonic cycle which

the Church still uses. The dates of these teachers cannot be

more precisely determined than this, that they were all teaching

in Athens between 440 and 400 B.c. A few of them, as

has been said, were geometers, but the merits of these (as of

the rest) have been greatly obscured by Plato’s well-known

hostility to their class. Hence perhaps it is that Proclus, an

ardent Platonist, in his Eudemian summary, names only

Hippocrates as a good geometer.

98, By the Pythagoreans, it will be remembered, the

geometry of the circle was practically neglected. This part of

the science was revived in the Athenian schools, which occupied

themselves chiefly with three famous problems (1) Quadrature

of the circle (2) Trisection of an angle (3) Duplication of the

Cube. It was mainly through a thousand attempts to solve

these problems that new propositions and new processes were

discovered and geometry made daily progress. It is not sur-

prising that the first two of the three should have invited

attention. Quadrature of the circle was a problem almost as

old as geometry itself, and the Pythagoreans, who were so busy

with symmetrical divisions of all kinds, would have been led

1 I add Rim here because Aris-

tophanes {Birds, 992—1020) seems to

treat him as a sophist. He is there

introduced carrying a machine for

squaring the circle. The Metonic

G. G. M.

cycle is said to have been adopted

from B.c. 432. The year, according

to it, is stated by Ptolemy to have

been 365^ days + of ^ ‘tay. This

is more than half an hour too long.

II
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naturally enough to trisection. But the duplication-problem is

not so easily accounted for. Eratosthenes, in a letter^ de-

scribing the solutions of this problem, addressed to Ptolemy ill,

(Euergetes), says that an old tragic poet had represented King
Minos as wishing to erect a tomb for his son Glaucus: hut

being dissatisfied with the dimensions (100 feet each way)

proposed by his architect, the King exclaims: ^‘The enclosure is

too small for a royal tomb : double it, but fail not in the cubical

form^.” A little further on, Eratosthenes says that the

Delians, who were suffering under a pestilence, were ordered by
the oracle to double a certain cubical altar and, being in

a difficulty, consulted Plato on the matter. Both these

statements, perhaps, contain a minute portion of truth.

The problem was certainly called ‘the Delian,’ and it may have

originated in an architectural difficulty. But for this evidence,

one would have been inclined to say, with Bretschneider, that

the problem was suggested in the investigation of incommen-

surables. It was at least well known in Athens before Plato’s

time^

99. Hippias ofElis is mentioned intheEudemian summary

as authority for the geometrical performances of the brother of

Stesichorus, but is not named as the author of any original

work himself. A certain Hippias, however, who can hardly be

^ Quoted by Eutocius in Archimed.

De Sph. et Cyl. Torelli’s ed. p, 144.

Bretschneider, p. 97, suggests that the

duplication-problem is due merely to

this : the Pythagoreans had found that

the diagonal of a square is the side of

a square twice as large as that of

which it is the diagonal, and they

wished to find a similar law for the

cube.

2 Valckenaer {Diatribe de fragm.

Eurip. p. 203), suggests that the lines

are from the Polyidus of Euripides

and ran

ynKpbv 7* Ae^as ^aaLXiKov ayKov Td<f>ov‘

SiTrXacrtos toO kv^ov 5^ /ay a-(pd\ys,

^ On the Greek circle- squarers the

chief authority is Simplicius in Ar.

Phys. printed, from the Aldine edition

(1526), with many corrections, by Bret-

schneider, pp. 100 sqq. On the dupli-

cation-problem, Eutocius in Archimed.

De Sph. et Cyl. Bk ii. is most copious,

but very little is said by any ancient

writer about trisection. The modern

commentators (Bretschneider, pp. 94

— 134. Hankel, pp. 115—127, 150

—

156. Allman in Hermathena vii. pp.

180—228. Cantor, Varies, pp. 172

—

176, 180—182, 194—201, etc.) present

an embarras de richesses. I shall in

the main follow Cantor, whose arrange-

ment, though it does not offer the

same opportunities for brilliant and

comprehensive- criticism as Allman’s

or Hankel’s, is better suited to my plan.
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anybody else than Hippias of Elis^ is mentioned elsewhere by

Proclus and the mathematical learning of this sophist is directly

attested by Plato himself I It is true that he is mentioned by

Plato with a certain sarcasm. Protagoras, for instance, in his

long and eloquent plea for his own teaching, is made to say

“The others injure the young : for they drag them back against

their will into arts which they would fain avoid, teaching them

arithmetic and astronomy and geometry and music (and here

he glanced at Hippias), but he who comes to me shall learn only

that for which he comes.” Hippias evidently was the polymath

of his time and had high notions of a liberal curriculum.

Proclus mentions him twice In the first passage, he says that

Nicomedes had solved the trisection problem by means of the

conchoid curve, which he himself invented : that others had

used for the same purpose the mixed curve called the quadratrix

of Hippias and Nicomedes and that others divided an angle

in any given proportion by using the spirals of Archimedes.

In the second passage, he says that mathematicians have

described the properties of various curves, Apollonius of the

conic sections, Nicomedes of the conchoids, Hippias of the

quadratrix (rerpaycovl^ovaa) and Perseus of the spirals.

Pappus^ however, says that the quadrature of the circle was

effected by Dinostratus, Nicomedes and other later geometers

by means of a line which, from this use, was called the quad-

ratrix. Here Hippias is ignored. Now Dinostratus belongs to

the end of the 4th century B.c. and Nicomedes seems to be a

century later. Cantor, therefore, proposes^ to reconcile the

statements of Proclus and Pappus by supposing that Hippias,

i.e. Hippias of Elis, invented a curve which was found useful

for both the quadrature- and the trisection-problems, and that

this curve was, by Dinostratus or Nicomedes or later, called

^ Allman (vii. p. 220) and Hankel

(p. 151) deny this. Bretschneider

(p. 94) and Cantor (p. 165) affirm it.

The latter shows, by many instances,

that Proclus was always careful to dis-

tinguish writers of the same name.
“ Hippias Maj. 285, on, Hippias

367, 368. Protagoras, 318 e.

® Ed. Friedlein, pp. 272, 356.

^ IV. c. XXX. ed Hultsch, p. 251.

So also Simplicius loc. cit. quoting

lamblichus, names Nicomedes only in

connexion with the quadratix. Bret-

schneider, p. 108.

5 p. 167.

11—2
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the qiiadratrix, rerpaycovL^ovaa. Originally, it may have been

intended only for the trisection.

The construction of the quadratrix is thus described by

Pappus {loc. cit.). “In the square

a^yS, from a as centre with a(3 as

radius, describe a quarter of a circle

^eS. The straight line ajS moves

evenly about its end a so that the

other end /3 moves in a given time

along the whole arc jSeS. The line

I3y moves evenly in the same time,

remaining always parallel to itself from the position ^y to the

position aB. The locus of intersection of this straight line

with the moving radius a/S iij the curve which is the

quadratrix!’ The property of this curve consists in this, that

any straight line afe drawn to the circumference of the circle,

makes the ratio of the quadrant to the arc eB equal to the ratio

of the straight lines /3<x : And since the straight line /3a

can be divided into any number of parts, in any given ratio to

one another, so also can the quadrant or the arc eB, and the

trisection or any other section of an angle is performed. The
quadrature of the circle is given by this curve, since the straight

line which is equal to the quadrant ^eB is a third proportional

to ar], 7]B^.

100. Theodorus of Cyrene, whom the Eudemian summary

names with praise, is known to us only as the mathematical

teacher of Plato^. lamblichus says he was a Pythagorean and

Plato introduces, in the Theaetetus, his discovery in effect that the

square roots of numbers between 3 and 17 (except 4, 9, 16)

are irrational. He does not seem to have visited Athens.

101. Hippocrates of Chios, who is mentioned with

Theodorus in the summary, was one of the greatest geometers

of antiquity. Like Thales, he began life as a merchant but lost

his property either by piracy or through the chicanery of the

1 Pappus, IV. 26. Bretschneider, p. 2 Diog. Laert, ii. 104. lamblichus

96. Hankel, p. 151. Cantor, p. 168, Vita Pijth, 267. Plato, Theaet. 147 n.

213, {suh Dinostratus).
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Byzantine custom house \ He came to Athens to prosecute the

offenders, employed his leisure in attending lectures^ and ulti-

mately himself became a teacher of geometry. Aristotle says he

had a talent for the science but was in other respects slow and

stupid Kal d(l)p(ov). The Greeks, however, would natur-

ally call any man a fool who was cheated of his property and

Aristotle seems to have no other evidence for his criticism of

Hippocrates. He may, of course, have been right. There are

still extant mathematicians who are singularly deficient in

ability for any studies but their own.

The most celebrated achievement of Hippocrates was

that 'squaring of the lune’ which the Eudemian summary
attributes to him. He was, however, ardently engaged on both

the quadrature and the duplication-problems and added enor-

mously, in the course of his researches, to the geometry of the

circle. He wrote also the first textbook of 'Elements,’ a

sufficient service in itself to the cause of the science.

The first step^ in Hippocrates’ attempts at quadrature was

the squaring of a particular lune as follows. On a given straight

line AB, he described a semi-circle, and inscribed in this an

isosceles triangle AEB. On the

equal sides of this triangle he de-

scribed two other semicircles. Now
in the right-angled triangle ABB,
AB^ = AB^ -1- BB^ and (since circles

or semicircles are to one another as the squares Oif their

diameters)^ the semicircle ABB is equal to both the smaller

^ Aristotle, Eth. Eudem. vii. 14.

Joh. Philoponus m Ar. Phys. ed.

Brandis, p. 327.

2

lamblichus {De Philos. Pyth. lib.

III., Villoison, Anecdota Gr. ii. p. 216)

says that Hippocrates and Theodoras
divulged the Pythagorean geometry.

Fabricius, Bihl. Gr. i. p. 505 (Ham-
burg. 1718), referring to this passage of

lamblichus, says wrongly that Hippo-

crates and Theodoras were expelled

from the Pythagorean school for making
money by teaching geometry. See All-

man, Herm. vii. pp. 188, 189.

3 Simplicius in Bretschneider, pp.

102—103. Vieta {Opera, p. 386), quotes

these two proofs of Hippocrates from

Simplicius, and Montucla follows Vieta

(Bretschn. pp. 122, 123).

4 This proposition (Euclid xii. 2)

is expressly attributed to Hippocrates

by Eudemus “ in the second book of his

History of Geometry,” as quoted by

Simplicius shortly afterwards (Bret-

schn. p. 110 top). The proposition as

stated by Hippocrates seems to have
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In a semicircle lie inscribed

semicircles on AF, TB or is double of either of them. But the

semicircle AFB is also double of the quadrant AFA, which,

therefore, is equal to the semicircle on AF. Take away from

both the common part and it is seen that the triangle AFA
is equal to the lune {jjbrjvlcrKo^) which lies outside the semicircle

AFB.
The next step^ was as follows,

half of a regular hexagon, and on

the three sides of this as diameters

he described the semicircles FHE,
E0Z, ZKA. Then, since the

sides FE, EZ, ZA are equal to

the radius FA of the large semi-

circle and the semicircle on a radius is a quarter of that on a

diameter of the same circle, it follows that each of the three

smaller semicircles is a quarter of the large one; It follows that

the three smaller semicircles together with that on the radius

FA is equal to the larger semicircle. Deduct the common
parts. Then the external lunes, together with the semi-circle

on FA, are equal to the trapezium FEZA. But the lune

has been shown, in the first step, to be equal to a rectilineal

figure. Deduct therefore from FEZA the three rectilineal

figures equal to the three external lunes, and the remainder is

a rectilineal figure equal to the semicircle on FA, and twice

this rectilineal figure is equal to the circle on FA and thus the

circle is squared.

The fallacy^ here lies, as Simplicius rightly points out, in

been (see Bretschneider, p. 120, n. 1),

that similar circles are to one an-

other as the squares of their diameters,”

from which it would appear that he

was not quite sure that all circles are

similar to one another.

1 Simplic. in Bretschn. pp, 103, 104.

2 \l/evdoypa<pr]fxa in Simplicius, i. e. a

false delineation, a fallacy founded on

a faulty diagram. The errors of Hip-

pocrates, Antiphon and Bryson, in

their attempts to square the circle are

referred to and contrasted with one an-

other by Aristotle, Soph. Elencli. pp. 171

h. 172 : Phys. 185, a. and also (as well

as by Simplicius) by the commenta-

tors Themistius and Joh. Philoponus

[Schol. in Ar. ed. Brandis, p. 327 6.

33, 211 6. 19, 30, 41, 212 a. 16).

Bretschneider (p. 122) thinks that Hip-

pocrates was too good a geometer

to make the mistake here attributed to

him and supposes that, in his second

step, he merely said “1/ the lune on

the side of a hexagon can be squared,

so can the circle.”
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assuming that the lunes in the second step are the same as

those in the first step, which they are not. The first step

squares the lune formed on the side of an inscribed square in a

circle : the second step deals with lunes formed on the sides of

an inscribed hexagon. Hippocrates seems to have felt this

difficulty, for he proceeded to examine other lunes which might

lead to a quadrature of the circle. Simplicius quotes from

Eudemus, with some additions of his own, these further

attempts. It appears that Hippocrates made some important

additions to his proposition that circles are to one another as

the squares of their diameters. He proved^ that similar seg-

ments of a circle are to one another as the squares of their

chords (/3acret?)
;

that similar segments contain equal angles,

and that in a segment less than a semicircle the angle is

obtuse, in a segment greater than a semicircle the angle is

acute ^ Using these propositions he squared a lune of which

the exterior arc is greater than a semicircle'^ and again a lune

of which the exterior arc is less than a semicircle^ Lastly, he

squared a lune and a circle together in the following manner^.

Describe two circles about a common centre K, and let the

square on the diameter of the exterior circle be six times the.

square on that of the interior. Inscribe in the inner circle

a hexagon ABFAEZ and draw the radii KA, KB, KF and

1 Bretschneider, p. 110. Allman,

Herm. vii. p. 197. Hippocrates de-

fined similar segments as those which

contained the same quotum of their

respective circles, e.g. a semicircle is

similar to a semichcle, a quadrant to

a quadrant.

2 He uses also the props. Euclid ii.

12 and 13, hut it does not appear that

he invented these.

3 Bretschneider, pp. Ill, 112, fig. 8.

Allman, vii. pp. 198, 199. This lune is

obtained by the following construction.

Hippocrates draws a trapezium having

three equal sides and the fourth such

that the square on it is three times the

square on any other side. About this

trapezium , he described a circle, and

on its greater side he described a seg-

ment of a circle similar to those of

which the three equal sides are the

chords. The exterior arc of the lune so

obtained is greater than a semicircle.

^ Bretschneider, pp. 114—119, fig.

9. Allman, vii. pp. 199—201 (with

additions and corrections to Bret-

schneider). The proof and even the

construction are too long and compli-

cated to be given here. The propo-

sition is remarkable as involving the

consideration of a pentagon with a re-

entrant angle. This is described how-

ever as “a rectilineal figure composed

of three triangles.”

® Bretschneider, pp. 119—121, fig.

10. Allman, vii. pp. 201, 202.
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produce them to meet the circumference of the outer circle in

H, e, 1 and join H®, ®I, HI.

Then it is evident that H®, ®I
are sides of a hexagon inscribed

in the outer circle. On HI de-

scribe a segment similar to that

cut off by H®. Then since the

square on HI is three times the

square on H®, the side of the

hexagon^ and the square on

H® is six times the square

on AB, it is evident that the

segment on HI must be equal to the sum of the segments of

the outer circle on H®, ®I, together with those cut off* in the

inner circle by all the sides of the hexagon. If we add to both

equals the part of the triangle H®I lying over the segment HI,

then the triangle H®I is equal to the lune H®I together with

the segments of the inner circle cut off* by the sides of the

hexagon : and if we add to both equals the hexagon itself, the

triangle together with the hexagon is equal to the lune H®I
together with the interior circle.

These demonstrations, though they do not lead to quadrature

of the circle, must have greatly stimulated the study of that

problem, since they indisputably prove that some curvilinear

figures are capable of quadrature^. They are given here almost

verbally as they are reported by Simplicius who found them

in Eudemus who must have had them from Hippocrates’ own

1 The proof of this is inserted by

Simplicius. Join IM. Then the square

of the diameter HM is equal to the

squares of HI, IM, and is also equal to

four times the square of IM or any

other side of the hexagon.

2 These performances of Hippocrates

are very neatly described by Hankel,

(p. 127) after Bretschneider. He says

that Hippocrates squared “lunes which

are contained by two arcs standing on

the same chord, the central angles of

the arcs being to one another as 1 : 2

or 1 : 3 or 2 : 3. To these surprising

discoveries he attached great hopes

and shewed that if in the same way
certain other lunes could be squared,

the quadrature of the circle would also

be solved.” He adds in a note from

Clausen (Crelle’s Journ. xxi. p. 375):

“ It is interesting that the lunes squared

by Hippocrates are in fact the only

ones whose area can be constructed in

the elementary manner, with the aid

only of ruler and compasses.”
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work. They are interesting, apart from their intrinsic ability,

as being the oldest specimens of reasoned geometrical proofs in

existence. They appear to be in part taken verbally from

Hippocrates, for the matter is rather confused and full of

repetitions and the diction is in places archaic, witness such ex-

pressions as “the line on which AB is marked,” “the point on

which K stands” (77 6 <^’ ov AB, to i<f>* ou K). From this it seems

that letters, for the purpose of describing a geometrical figure,

were of recent introduction\ It is to be observed also that

Hippocrates does not, like Euclid, omit I from the geometrical

alphabet. Another fact of great interest, if Simplicius is really

citing Hippocrates, is this, that we have here the first use of

the word hvvafjbi^ in the sense of ‘square,’ from which the

Latin translation potentia and the English ‘power’ have passed

into algebraical nomenclature^.

102 . Beside the quadrature of the circle, Hippocrates was

busy also with the duplication-problem. He observed that in

the proportion a : cc :: x :y y \ 2a, since x^= ay and y"^ — 2ax

and x^ = a^y\ then x^ = 2o?x and x^ = 2a®.. Consequently, the

problem of doubling a cube may be reduced to finding two

mean proportionals between one straight line and another twice

as long. The problem thus ceases to be one of solid and

becomes one of plane geometry®. The same ill-luck however

attended Hippocrates with this problem as with the other. He
merely, as Eratosthenes in his letter above-quoted remarks,

exchanged one difficulty for another. Nevertheless the dupli-

cation-problem was afterwards treated always in the form in

which Hippocrates stated it and thus stereometry, as Plato

complains^ went entirely out of fashion.

103 . In connexion with this recasting of the duplication-

problem, Proclus {Jioc. cit.) ascribes to Hippocrates the invention

of diraywyr], or geometrical reduction, which he defines as a

1 Cantor, p. 177, surmising that

letters were used with diagrams in the

Pythagorean schools, points out that the

letters vyLeoL (Health) seem to have

been placed on the vertices of the

pentagram. For the Greek expressions

cf. Aristotle, An. Priora, p. 69 a.
’

2 See supra, p. 78 n.

5 Proclus, ed. Friedlein, p. 212. E-

ratosthenes in Eutocius uti sup. (ed.

Torelli, p. 144).

4 See, for instance, Pep. vii. 528 n.
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transition from one problem or theorem to another, which being

solved or proved, the thing proposed necessarily followsh The

rediictio ad absurdum^ is a particular and the commonest kind

of aTraycoy}], in which the substituted contrary theorem is

disproved by analysis. The introduction of the analytical

method of proof is attributed to Plato but it must have been

constantly resorted to before®. The proposition Euclid xii. 2,

which is attributed to Hippocrates by Eudemus may therefore

have been proved as it stands by Hippocrates. This style of

proof was regularly used by the Greek geometers in their

“ method of exhaustion^’ i.e. the method of exhausting, by

means of inscribed and circumscribed polygons, the area of a

curvilinear figure.

104 . The process of exhaustion was introduced, for the pur-

poses of the quadrature-problem, about the time of Hippocrates,

by Antiphon and Bryson, Antiphon^ a sophist who is said to

have often had disputes with Socrates^, inscribed in a circle a

square: on the sides of this he constructed in the segments

isosceles triangles, on the sides of these other isosceles triangles

and so on, exhausting the circle : or, according to Themistius,

he began with an equilateral triangle, on the sides of which he

constructed isosceles triangles and so on. Bryson of Heraclea,

a Pythagorean of the same time, attacked the quadrature of

the circle by inscribing a polygon and circumscribing another®.

He then assumed that the circle was an arithmetical mean
between the inscribed and the circumscribed polygons. Of
these two methods, the latter was more consonant with the

1 In Aristotle, A7ial. Prior, ii. p. 69 a.

c. 25 (27) aTraywyrj is a syllogistic proof

which involves a probable assumption.

The example chosen is as follows

;

A is capable of quadrature : E a I'ecti-

lineal figure : Z a circle. All E is A, but

that Z is E is one step short of cer-

tainty, since we know only that a circle

with a lune is equal to a rectilineal

figure.-

^ diraycoyg els dbvvarov.

3 There are signs of it in Hippo-

crates. See Bretschneider, § 89, p.

114, n. Hankel, 149.

^ Diog. Laert. ii, 46. Bretschneider,

p. 101 (quoting Simplicius uti supra),

and p. 125 (quoting Themistius in

Ar. Physica, ed. Brandis, p. 327).

® Bretschneider. p. 126 (quoting Joh.

Philoponus in Ar. Anal. Post. ed.

Brandis, p. 211), and p. 127 (quoting

Alex. Aphrod. in Ar. Soph. Elencli. ed.

Brandis, 306 h).
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ancient, the former with modern notions. Upon Antiphon,

Simplicius remarks, and quotes Eudemus to the same effect,

that the inscribed polygon will never coincide with the circum-

ference of the circle, else a geometrical principle would be set

aside which lays down that magnitudes are divisible ad in-

finitum^. Antiphon, indeed, would seem to be the sole ex-

ception to the rule that the ancients never considered a circle

as a polygon with an infinite number of sides. “This principle”

says Chasles^, not adverting to Antiphon “has never appeared

in their writings : it would not have suited the rigour of their

demonstrations. It was the moderns^ who introduced it into

geometry and simplified thereby the ancient demonstrations.

This happy idea was the passage from the method of exhaustion

to the infinitesimal method.”

105 . It being admitted that Antiphon and Bryson in-

troduced the practice of exhaustion and that Hippocrates shows

signs of using analysis in geometry, the question arises whether

he did in. fact prove Euclid xii. 2. as it stands. If he did, then

he invented that rigorous mode of proof, called “the method of

exhaustion,” which is generally attributed to Eudoxus. This

method may be considered as contained in two propositions^,

as follows.

(1) If A and B be two magnitudes of the same kind, of

which A is the greater, and there be taken from A more than

its half (or any other fraction) and from the remainder more

than its half (or any other fraction) and so on, the ultimate

remainder will be less than B. (This is the prop. Eucl. x. 1.

now prefixed as a Lemma to the 1 2th Book.)

(2) Let there be two magnitudes P and Q, both of the

same kind and let a succession of magnitudes X^, etc.

1 Bretsclineider, p. 102. This is the

proposition which Zeno denied and

which Aristotle is always supporting.

See especially his treatise irepl dro/xuv

ypa/x/jLoju, shewing that there are no in-

divisible lines, and compare Hankel,

pp. 117-120.

^ Apergu, p. 16.

® Kepler (in his Nova Stereometria

Doliorum) and Descartes. Cf. Hallam,

Hist, of Lit. Pt. III. c. 8, secs. 9, 14.

See De Morgan’s article ‘ Geometry

of the Greeks’ in the Penny Cyclop.

Cantor, pp. 233, 234. Hankel, pp.

122—124.
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be each nearer and nearer to P, so that any one shall differ

from P less than half as much as its predecessor differed. Let

Fj, Fg, Fg etc. be a succession of magnitudes similarly related

to Q, and let the ratios : F^, X^ : etc. be all the same

with each other and the same as ^ : P. Then P : Q A : B.

(Suppose Xj^, Xg etc. all less than P and F^, etc. less than Q.)

Now if ^ : P is not P : Q, then ^ is to P as P is to some other

quantity S, greater or less than Q. Take S less than Q. Then

by the hypothesis and prop. I. we can find one of the series

F^, Fg (say F^) which is nearer to Q than P is, and is therefore

greater than S. Then, since X^ : Y^ :: A : B :: P : S, it follows

that X^ : P :: F„ : S. But is less than P, therefore F^ is

less than S. But F„ is also greater than P, which is absurd.

In like manner, it may be proved that, if P be taken greater

than Q, then the proportion A : B :: P : 8 is an absurdity.

Therefore A : B :: P : Q. (Vide Euclid xii. 2.)

106. The discussion of the question whether Hippocrates

or Eudoxus was the author of this method proceeds on

the following lines. The opening lemma was the mathe-

maticians’ evasion of the difficulty which Zeno had found in

infinite division. They avoided the expression ^"infinitely small

magnitudes” by substituting for it ‘"magnitudes as small as we

please.” Now Archimedes^ says that this lemma (in a different

form) was used by “former geometers” for the theorem End.

XII. 2. Eudemus attributes this theorem to Hippocrates and

there is in fact no other way of proving it save by the method

of exhaustion, which Euclid adopts. Dr Allman^ replies that

Archimedes mentions this theorem not with particular emphasis

but along with three others, two of which were beyond question

proved by Eudoxus^ who is said also to be the author of the

theory of proportion contained in Euclid v. He does not,

however, suggest any proof of the theorem which Hippocrates

might possibly have arrived at without using the lemma.

Here Cantor^ is more satisfactory, for he points out that the

Egyptians had long ago adopted a fixed arithmetical ratio

1 Pref. to Quadr. Parah. (Torelli’s 3 Archim. Pref. to Sph. et Cyl.

ed. p. 18). Hankel, p. 120 sqq. Torelli’s ed. p. 64.

2 Hermathena vii. pp. 222—223. ^ p. 178.
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between a circle and the square of its diameter and Hippocrates

may have known this through the Pythagoreans. It is probable,

moreover, as will be seen presently, that Plato first raised ana-

lysis to the dignity of a legitimate geometrical method. The

evidence, therefore, inclines to the opinion that the method of

exhaustion is to be ascribed not to Hippocrates, but to Eudoxus,

who lived nearly a century later, but we know, in truth, so little

about the Greek geometry of the period that no man is entitled

to hold this opinion very confidently.

(e.) The Academy.

107 .
Plato was born of wealthy and distinguished paren-

tage, at Athens in 429 B.c. the year of the great plague. He
was a pupil of Socrates, who was executed 399 B.C., but he did

not derive from this teacher his enthusiasm for mathematics,

since Socrates was of opinion that it was no use learning more

geometry or astronomy than would suffice for daily wants, such

as to measure a field or tell the time of day\ But Plato, after

the death of Socrates, went away from Athens and consorted in

many places with Pythagoreans who no doubt indoctrinated him

with a passion for their favourite science. He went certainly

to Egypt, also to Gyrene where he studied with Theodorus, and

lastly to Magna Graecia and Sicily (in B.c. 389) where he became

a close friend of Archytas and Timseus of Locri. He returned

to Athens and formed about himself a school of students who
heard his discourses in the grove of the Academia, a suburban

gymnasium. He died, at the age of 81, in 348 B.C.

The physical philosophy of Plato, being partly founded on

the Pythagorean, is partly, like the latter, an attempt to find in

arithmetic and geometry the key to the universe. He held

that God was a great geometer^ and therefore made a know-

ledge of geometry an indispensable preliminary to the study of

philosophy. It is said that he inscribed over his porch “Let

1 Xenophon, Memordb. iv. 7. Diog. does not occur in, any extant work of

Laert. ii. 32. Plato’s, but he does say {Rep. 527 b)

2 According to Plutarch, Quaest. that geometry, rightly treated, is the

Conv. VIII. 2, IIcGs UXaruj/ ^Xeye rbv knowledge of the eternal.

deov dd yeiojuerpeip
;
The expression
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none that is ignorant of geometry enter my doors”’ and Xeno-

crates also, who after Speusippus succeeded to the professorial

chair, so to say, of the Academy, is reported to have turned

away an applicant for admission who knew no geometry, saying

“Depart, for thou hast not the grip of philosophy.”^ But

it was not really with a view to physical speculation that Plato

thus glorified geometry. He was interested, no doubt, in the

inanimate world but he was interested far more in man. The

nature and laws of thought and the rules of conduct were his

especial subject, and he valued geometry mainly as a means of

education in right seeing and thinking and in the conception of

imaginary processes. Hence it was that, as the Eudemian

summary says, “he filled his writings with mathematical dis-

courses, and exhibited on every occasion the remarkable con-

nexion between mathematics and philosophy.” This statement

may be illustrated by two interesting passages in tbe Mem, a

dialogue on Virtue which Socrates is supposed to hold with

Meno, a pupil of the sophist Gorgias. In the first of these

passages^ Socrates has just suggested that the knowledge

which we seem to have by intuition, is really recollected from

a former state of existence, that in fact “our birth is but a

sleep and a forgetting.” In illus-

tration of this theory, he calls up

one of Meno’s slaves and draws

before him, by several steps, the

accompanying figure, a square of

4 feet. The boy apprehends the

steps perfectly well and correctly

answers Socrates’ questions^, until

at length Socrates, having induced

him to say that the square obliquely

placed is double of the square of 2 feet with which the diagram

^ fjLTjdeh ayeooixiTpy^TO^ etVi'rw fiov r-qv

aT^yrju. Tzetzes. Chil. viii. 972.

2 iropeijov, Xa^as yap ovk rrjs

0iXo(ro0tas. Diog. Laert. iv. 10.

^ Meno, 82 b—85 b .

^ The conversation begins as follows.

Soc7\ ‘Tell me, boy, do you recognise

this for a square ?
’ Boy, ^ Yes.' Socr.

‘Is not it a square that has all these

four lines equals?’ Boy, ‘Of course.’

Soc7\ ‘And these cross-lines equal too.’

Boy, ‘Yes,’ etc. etc.
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was commenced, elicits the incorrect answer that the side of the

oblique square is twice 2 feet. Upon this Socrates retraces his

steps and, by judicious questions, leads the boy on to say that the

side of the oblique square is more than 2 and less than 4 and

yet is not 3 feet. Here it is obvious that Plato is interested

not in the Pythagorean theorem or incommensurable lines, but

in the chain of reasoning. Similarly, a little later in the

dialogue^ Meno asks Socrates whether virtue may be imparted

by teaching. To this Socrates replies “Let me argue this upon

hypothesis. A geometer, if he were asked ‘Can this area (i.e.

the square of 2 feet) be inscribed in this circle^?’ might say ‘I

don’t know, but I think I can suggest a useful hypothesis. If

this area is such that, when applied to the given diameter, it is

deficient {iWelTrei) by an area equal to itself, then one con-

sequence follows, but if this be impossible, then another^’ So

in the case of virtue, we must assume virtue to be or not to be

[ex hypothesi) one of some class of goods etc.” Here also it is

the logical procedure and not the_prqblem_whiich is intended to

_be observed . The reader therefore is prepared to find, as the

fact is, that Plato was rather a maker of mathematicians than

himself distinguished for original discoveries and that his con-

tributions to geometry are rather improvements in its method

than additions to its matter. It was he who turned the

instinctive logic of the earlier geometers into a method to be

used consciously and without misgiving^. With him, apparently,

begin those careful definitions of geometrical terms, that distinct

^ Meno, 86 D

—

87 a.

" Socrates may, early in the dialogue

(73 e), have drawn a circle on the

ground.

3 The text of this passage (which is

absurdly translated by Jowett) is ex-

tremely obscure, but it seems certainly

to refer to the previous figure. A
square of 2 ft. is there shown to be

equal to an isosceles right-angled tri-

angle of which the base is 4 ft. If the

diameter of the given circle is 4 ft.

a triangle equal to the given square of

2 feet can certainly be inscribed in it.

A square of 2 ft. applied to a line of

4 ft. is deficient by a square of 2 ft.

(See supra p. 84 w.) This explanation

seems to be Benecke’s ( TJeher die Geom.

Hypoth. in Plato's Menon, 1867). Han-

kel (p. 134 n.) says that the text is

unnecessarily difficult for describing

so simple a fact, but I am inclined to

think that Plato was fond of ‘ showing

off’ his mathematics. The famous

‘Nuptial number’ in Rep. 546 b.c. is

an instance in point.

^ See a brilliant chapter of Hankel,

pp. 127—150.
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statement of postulates and axioms, which Euclid has adopted.

The Pythagorean so-called definitions, such as “A point is

unity in position,” are not explanations of terms hut statements

of a philosophical theory. But the Academics, as became the

pupils of Socrates, desired explicit determination of the mean-

ings of words. Thus Aristotle^ says that Plato objected to

calling a point a ‘geometrical fiction’ (Soy/na), and defined it

as ‘the beginning of a straight line’ or ‘an indivisible line.’

Aristotle gives also as definitions customary in his time the

following; ‘the point, the line, the surface are respectively the

boundaries of the line, the surface and the solid ‘a line is

length without breadth:’ ‘a straight line is one of which the

middle point covers both ends’ (the eye being placed at either

end of the line): the surface arises from ‘the broad and the

narrow:’ ‘a solid is that which has three dimensionsV So

also Aristotle refers to ‘mathematical axioms’ and often quotes

one of them, viz. ‘If equals be taken from equals the remain-

ders are equaP.’ Although probably not all of these definitions

and axioms are due to Plato himself, yet one great invention in

geometrical methods is expressly attributed to him. Both

Proclus (ed. Friedlein p. 211) and Diogenes Laertius (iTi. 24)

state that Plato invented the method of proof by analysis‘s. It

is not, indeed, to be supposed from this that analysis was new

to Greek geometers for Hippocrates uses it, as was above-stated,

and most of the early geometers probably were led, by the

contemplation of constructions, to the invention of theorems,

and were thus using analysis without knowing it. But Plato

may very well have introduced analysis as a legitimate method

1 Metaphys. i. 9. 992, a. 20.

2 The passages here quoted are in

order Aristotle, Top. vi. 141 b. 19,

143 b. 12, 148 b. 29, Metaphys. i. 9,

902 a. 12: Top. vi. 5, 142 b. 24, obs.

Aristotle calls a point aTiy/xy, the later

word being aryieiov : and a surface eirL-

iredop, later e7ri0dveta, the former word

being later appropriated to ‘plane.’

Metaphys. iv. 3, 1005 a. 20, xi. 4,

1061 b. 17: An. Post. i. 11, 77 a. 31

(with the addition ^ rwv toiovtoju aWa
‘or any such axioms’). Hankel, p.

136 nn.

^ Both state also that he “gave- it
'

to Leodamas of Thasos, which pro-

bably means that Plato orally described

the method to Leodamas and the latter

wrote or lectured upon it, describing it

as Plato’s but giving his own geo-

metrical illustrations.
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in geometry to be consciously employed, may have given rules

for its conduct and pointed out under what conditions it was

satisfactory or not so.

108 . The oldest definition of Analysis as opposed to

Synthesis is that appended to Euclid xili. 5. It was possibly

framed by Eudoxus \ It states that Analysis is the obtaining

of the thing sought by assuming it and so reasoning up to an

admitted truth : synthesis is the obtaining of the thing sought

by reasoning up to the inference and proof of it.” In other

words, the synthetic proof proceeds by shewing that certain

admitted truths involve the proposed new truth : the analytic

proof proceeds by shewing that the proposed new truth involves

certain admitted truths. An analytic proof begins by an

assumption, upon which a synthetic reasoning is founded. The

Greeks distinguished theoretic from problematic analysis. A
theoTetic analysis is of the following kind. To prove that A is

B, assume first that A is B. If so, then, since B is G and G is

D and D is E, therefore A is E. If this be a known falsity^ A
is not B. But if this be a known truth and all the inter-

mediate propositions be convertible, then the reverse process,

A E, E is D, i) is G, G is B, therefore A is B, constitutes a

synthetic proof of the original theorem. Problematic analysis

is applied in cases where it is proposed to construct a figure

which shall satisfy a given condition. Hence the process con-

sists in constructing a figure which is assumed to satisfy the

given condition. The problem is then converted into some

theorem which is involved in the condition and which is proved

synthetically, and the steps of this synthetic proof taken

1 Bretsehneider, p. 168. Pappus

{Math. Coll. VII. ed. Hultsch, p. 635) Las

Euclid’s definition. Chasles (p. 5),

takes a definition from Vieta, Isagoge

in Artem Analyticen, ad init. “II est en

mathematiques une m^thode pour la

recherche de la v6rite que Platon passe

pouravoir inventee,queTh6on anomm6e
analyse et qu’il definit ainsi : Eegarder

la chose cherch^e comme si elle etait

donnee et marcher de consequences en

G. G. M.

consequences jusqu’a ce que Ton recon-

naisse comme vraie la chose cherch§e.

Au contraire la synthese se definit

:

Partir d’une chose donn6e pour arriver

de consequences en consequences a

trouver une chose cherchee.” See also

a note in Todhunter’s Euclid. App.

§§ 35 sqq.

2 Thus the reductio ad absurdum is a

kind of theoretic analysis. This is the

only analysis which Euclid admits.

12
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backwards are a synthetic solution of the problem. Suppose

there is only one condition : e.g. To describe a triangle having

each of the angles at the base double of the third angle. Draw
an isosceles triangle ABC and assume that

the base angles are each double of the ver-

tical angle. An addition must be made to the

figure. Bisect the angle A GB by the straight

line CD. There thus arises a theorem that

AB is> cut, at D, in extreme and mean ratio,

and that BG — AD, from which a synthesis

(Eucl. IV. 10) is obtained. (It will be seen

that the whole aim of problematic analysis is

to find a synthetic solution of the problem, and therefore the

ancient geometers, never omitted to add the synthetic solution

so found.) If there are more conditions than one, the procedure

is just the same. A figure is drawn which is assumed to

satisfy all the conditions, but the subsequent analysis is directed

to shewing what each condition, in turn, involves.

A very good authentic example of this more complicated

analysis is given by Hankel (p. 143) from Pappus\ The pro-

blem is : “Given the position of a circle ABG and of two

points D, E, outside it, it is required to draw from D, E the

straight lines DB, EB cutting the circle in B and produced to

A, Gy so that AG shall be parallel to DE." The analysis is

as follows. “Let the figure be drawn

and also the tangent FA. Then,

since AG is parallel to DE, the angle

at G is equal to the angle GDE. It

is also equal to the angle FAE (Euclid

III. 32). Therefore the angle FAE
is equal to the angle GDE, and the

points ABDF lie on the circum-

ference of a circle, and the rectangle AE, EB is equal to

the rectangle FE, ED. But the rectangle AE, EB is given*,

because it is equal to the square of the tangent; therefore

1 Coll. Math. VII. prop. 105. theorems stated in an abridged form,

’ da in Euclid’s sense. e.g. Prop. 92 (95 in Simson’s ed.) is

Euclid’s Data are a collection of “If a straight line be drawn from a
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the rectangle FE, ED is given, and since ED is given, so also

is FEj both in length and in position. A.nd since FA is a

tangent to the given circle and F is given, so also A is given.

And since A is given, so also is AE and the point B!’ Then

follows the synthesis. “Join ED and produce it to F, so that the

rectangle ED, EF is equal to the square of the tangent. From
F draw the tangent FA and join AE^' etc. The reader will

see that here the analysis is directed to two facts involved in

the conditions, the condition that AE cuts the circle in B,

involves the fact that the rectangle AE . EB, wherever A may
be, is equal to a certain square which can be found. The con-

dition that AG must be parallel to ED, involves the further

fact that the rectangle AE . EB is equal to the rectangle under

ED and EF, where F is that point in which ED produced

meets the tangent at A. The addition of a synthetic solution

is made eoc majori cautela, lest a condition should not have been

examined in the analysis or lest
,
a proposition reached in the

analysis should not be convertible (e.g. all A may be B, but not

all B need be A). Further, the problem may be under some

conditions impossible, and this fact is likely to be overlooked in

the analysis. Hence, to the synthetic solution, the Greeks

appended, if necessary, a diorismus (determinatid) or statement

of the conditions in which the given problem is or is not

soluble. The Eudemian summary ascribes the invention of the

diorismus to Leon the Platonist, but it is observable that the

passage above quoted from the Meno (p. 175) contains a partial

diorismus which is undoubtedly Plato’s. It is probable therefore

that the whole systematization of analysis is due to Plato.

“The conjunction of philosophical and mathematical pro-

ductivity” says Hankel, “such as we find, beside Plato, only

in Pythagoras, Descartes and Leibnitz, has always borne the

finest fruits for mathematics. To the first we owe scientific

mathematics in general. Plato discovered the analytic method,

given point without a circle given in

position, the rectangle contained by
the segments betwixt the point and the

circumference of the circle is given.”

This is an abridgement of ni. 36. One

sense of the word “given” is deter-

mined by Def. i. “Spaces, lines, and

angles are said to he given in magni-

tude when equals to them can be

found.”

12—2
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through which mathematics were raised above the standpoint

of the Elements; Descartes created analytical geometry; our own

celebrated countryman (Leibnitz) the infinitesimal calculus

—

and these are the four greatest steps in the development of

mathematics.” It must be admitted, however, that the intro-

duction of analysis is just the sort of service which might be

ascribed, by a vague exaggeration, to a philosopher who certainly

had a great influence on mathematics but left no mathematical

work.

109 . The one respectable solution which is attributed to

Plato seems to have been obtained through analysis in the first

instance. It will be remembered that Hippocrates had recast

the duplication-problem into one of plane geometry, to find

two mean proportionals to two straight lines. Let a, 5 be the

given straight lines, x and y the mean proportionals, so that

a \ X w X
\ y v. y \ b. Take GA = a : CX—x\ GY—y\ GB = h

and place these lines in a right-angled cross about the common
extremity G. Then the triangles AGX, XGY and YGB are

similar, and the angles AXY, XYB are both right-angles

(Euclid VI. 8 and Gor.). Hence a S3mthetic solution would

be obtained if a straight line XY could be so placed between

two arms of the cross that the perpendiculars to it at the points

X and Y would pass through A and B respectively. For this

purpose Plato ^ is said to have invented a little apparatus con-

sisting of a rectangular frame, one side of which would slide up

1 Eutocius in Torelli, p. 135. Han- 141—143. Cantor, p. 195.

kel, pp. 154, 155. Bretschneider, pp.
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and down so as to diminish or enlarge the rectangle at pleasure.

On the other hand, Plutarch relates^ that Plato blamed Archytas

and Eudoxus and Menaechmus for using such instruments for

the purpose of solving the duplication-problem, and said that

the good of geometry was spoilt and destroyed thereby, for it

was reduced again to the world of sense and prevented from

soaring among the unseen and incorporeal figures." Elsewhere^

Plutarch repeats the same story, and adds that, owing to this

remonstrance of Plato, mechanics were wholly dissociated from

geometry and reduced to a mere department of strategy. These

statements of Plutarch are much more likely to be true than

the other, which rests on the authority of Eutocius, and it may
be said therefore that to Plato we owe the strict limitation

of geometrical instruments to the ruler and compasses. It

will be remembered also that Plato deplored the decay of

stereometry, and we shall find this department of geometry

reopened with great zeal by Plato’s immediate pupils. In

short, however we discount the evidence, it is plain that Plato

was almost as important as Pythagoras himself to the advance

of Greek geometry.

no. It is desirable for two or three reasons to insert here

the solution of the duplication-problem which is attributed to

the Pythagorean Archytas. It could hardly be given before,

because it solves the problem in that form in which Hippocrates

recast it. Further, it is the kind of solution which Plato blames

and it involves some stereometrical considerations, which Plato

is ^thought to have revived. It will serve also to remind us

that, side by side with the Athenian mathematical school, there

was still the older Pythagorean at Tarentum, to which Plato

was probably under very great obligations. The solution of

Archytas is reported by Eutocius^ from Eudemus. It is as

1 Quaest. Conv. viii. 9, 2, c. 1. Bret-

schneider, p. 143.

2 Vita MarcelU, c. 14, § 5.

3 In Torelli, p. 143. The form given

in the text is Cantor’s (p. 196), but is

only very slightly abridged from the

original. The latter gives the synthe-

sis only. Bretschneider, p. 152, sug-

gests an analysis by which Archytas

may have been led to his solution. The
figure on the next page is awkward

and defective, for MI and KA' should

be joined, but it serves its purpose

sufficiently weU and is a little better

than Cantor’s.
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follows. Let AA, AB be the two straight lines, between which

two mean proportionals are required, and of these let AA be

the greater. Describe a semicircle on AA as diameter, and let

AB be a chord of this semicircle. • Describe on AA, in the per-

pendicular plane, another semicircle which can be moved round

from A towards B, the extremity of the diameter A remaining

fixed. This revolving semicircle will describe a curve on a

half-cylinder supposed to stand on ABA. Draw the tangent at

A and produce AB to meet it in IT. The triangle AAII turning

about AA as axis, produces a cone, which penetrates the half-

cylinder and cuts the curve thereon in the point K. This point

K being on the half-cylinder, the line KI drawn from it perpen-

dicular to the plane of the semicircle ABA meets the circum-

ference of that semicircle in I. While ATI is describing this

cone, the point B moves through a circle, BMZ, which is per-

pendicular to the circle ABAZ of which ABA is half. Since AKA'
is perpendicular to the same plane, the line M@ (which is the

line of section of BMZ and AKA') is also perpendicular to it,

and is likewise perpendicular to the line BZ, which is the line of

section of the plane BMZ with the plane ABAZ. Then since

BMZ is a semicircle and BZ its diameter, M@^ = B® . ®Z. But

B® . ®Z = A® . ®I (BZ and AI being two chords cutting one

another in ®). Therefore M®^ = A® . ®I. Therefore the angle

AMI is a right angle and is equal to AKA' (which is an angle in

a semicircle), and therefore MI is parallel to KA'. Therefore the

triangles A'AK, IAM, KAI are similar to one another, and
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AM : AI :: AI : AK :: AK : A'A. Take AM = AB = a, and A'A
= AA = h, and we then get two middle proportionals between a

and 6. It will be seen that this solution uses Euclid III. 18 and

35, and xi. 19, and discloses also very clear notions on the origin

of cylinders and cones, the section of a surface by a surface and

the curves thence arising. It must be remembered however that

Archytas probably used a mechanical apparatus in the solution

{supra, pp. 158, 181).

111. It was said above that Plato made many mathema-

ticians, and the observation is fully borne out by the discoveries

which are attributed to his immediate pupils. Of Leodamas
of Thasos, for whom Plato invented the method of analysis,

nothing more is known, save what the Eudemian summary says

of him, viz. that he and Archytas and Theaetetus greatly

extended mathematical inquiries, and improved them into a

more scientific system. This Theaetetus is the same who gives

a name to one of Plato’s dialogues and who was chiefly occupied

with the study of incommensurables. Suidas {s. v) attributes

to him a treatise on the five regular solids, but to what effect

this treatise was is not known. Of Neocleides and his pupil

Leon also, we know no more than the Eudemian summary tells

us, in which the only important fact is that Leon wrote an

improved ^ Elements ’ and treated particularly of diorismus.

112. But Eudoxus, who is mentioned next, was one of

the most brilliant mathematicians of antiquity. He was born

about B. c. 408 in Cnidus, was a pupil of Archytas, and sub-

sequently, for a few months, of Plato. He then went to Egypt

(with Plato, according to Strabo), thence to Cyzicus, where

he founded a school, and came from Cyzicus with his pupils

to Athens, where he met Plato again not on very friendly

terms. He returned finally to Cnidus and died there at the

age of 53 (b. c. 355).^ He is described by Diogenes Laertius

as astronomer, physician and legislator, as well as geometer.

In the first capacity he is said by Aristotle^ to have made
a kind of orrery, and various discoveries are attributed to

1 Diogenes Laert. VIII. 86—90. Bret- ^ Metaphys. vii. c. 8. See Schia-

schneider, pp. 163—164. Cantor, pp. parelli (trans. Horn) in Suppl. to

205, 206. Zeitschr, Math, Phys, vol. xxii.
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him. He wrote also a work on practical astronomy, ^atvofieva,

on which the extant poem 'of Aratus is founded \ The
Eudemian summary states that he added three kinds of

.
proportion to those introduced by Pythagoras, and increased

by the analytical method the learning, begun by Plato, on the

subject of the section. This must mean the so-called ^ Golden

Section,’ the cutting of a line in extreme and mean ratio

and the Eudemian summary is very well explained by supposing

that Eudoxus was in fact the author of the first five propositions

of Euclid XTII., which deals with the regular solids (see below

p. Idln). A scholiast on Euclid, thought to he Proclus^ says

further that Eudoxus invented practically the whole of

Euclid’s Fifth Book. Beside this work in proportion,

Archimedes expressly says (in the passages above cited upon

which the method of exhaustion is attributed to Hippocrates)

that Eudoxus proved by means of the Lemma, Euclid x. (xii),

1, the propositions that every pyramid is a third of a prism on

the same base and with the same altitude (Euclid xii. 7. Cor. i.),

and that every cone is the third part of a cylinder on the same

base and with the same altitude (Eucl. xii. 10). It is on the

strength of this perfectly clear evidence that Eudoxus is

supposed to have invented the method of exhaustion. Lastly,

Eudoxus is reported^ to have invented a curve which he

called liTTroirehr), or ' horse-fetter,’ and which resembled those

hobbles which Xenophon describes as used in the riding-school.

They were of the form

Proclus calls this curve a ‘spiral,’ and has some interesting-

remarks on its origin®. The word airelpa means a so-called

1 Aratus is criticised by Hipparchus,

who preserves some of the original

statements of Eudoxus. These are

criticised, as usual, with the utmost

contempt by Delambre. Astron. An-

cienne, Vol. i. p. 107.

2 The possible meanings are dis-

cussed byBretschneider, pp. 167—168.

Cantor, p. 208.

3

Knoche, Untersuch. ilher Schol. des

Proclus, pp. 10—13.

Simplicius, in Ar. Be Coelo, ed.

Brandis, p. 500, 10.

® Cantor pp. 209, 210, quoting Schia-

parelli, uti sup. section v. Proclus, ed

Friedlein, pp. 112, 119, 127, 128. He-

ron Alexandrinus, ed. Hultsch, p. 27,

def. 98.
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CO
oo
used certain

Here/ a ring-shaped solid of revolution which is produced

by the revolution of a circle about a straight line which lies

in the same plane with but does not cat the circle\ If this

solid be cut by a plane, there arises a '‘spiral” line, which

may assume three forms, according as the cutting plane is

more or less near the axis. If it is further from the axis than

the centre of the circle, we get an ovaP : if hearer, we get a

curve “ narrower in the middle and broader at the ends
;
but if

the plane is still nearer to the axis, so that it

touches the tore at an inner point, which is in

fact the double-point of the curve, we get the

LiTTroTTehr]!' Eudoxus somehow used this curve

in his description of planetary motions, but

nothing more is known of his treatment of it.

Eutocius, however, in the passage so often quoted

on the duplication-problem, says that Eudoxus

curves [KafjiTTvXal rypafi/xai) for his solution of this problem, but

he disdains to give this solution, because it had nothing to do

with these curves after all and contained an absurd mistake in

proportion. Eratosthenes, however, whose letter on the subject

Eutocius has himself previously quoted, mentions Eudoxus in

the same breath with Archytas, and calls him, in an epigram
appended to the letter, “ godlike.” The probability, therefore,

is that Eutocius was himself mistaken.

113. Amyclas of Heraclea, a Platonist, is unknown save

from the Eudemian summary, but Menaechmus, “ a pupil of

Eudoxus and a contemporary of Plato,” is well known to fame.

It was he who invented the geometry of the conic sections ^
which, after him, were sometimes called “the Menaechmian
triads.” Democritus, indeed, had cut a cone by a plane parallel to

the base {supra, p. I59?^.) but it was Menaechmus who took three

kinds of right cones, the “right-angled,” “acute-angled” and
“obtuse-angled” (as Geminus describes them in the passage

1 An anchor ring is the common ex-

ample of this solid.

2 Proclus (p. 112) describes this as

a Trapa/xrjKi^s, broad in the middle

and narrow at the ends.”

^ See the often-quoted letter of Era-
tosthenes in Eutocius, ed. Torelli, p,

146, and Proclus, ed. Friedlein, p. Ill,

(citing Geminus as well as Erato-

sthenes).
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quoted above, p. 137) and cutting these by planes at right-angles *

to one of their sides, exposed the parabola, ellipse and

hyperbola\ which he called the section of the right-angled,

acute-angled and obtuse-angled cone respectively. He seems,

however, not to have regarded these curves always in the cone

itself, but to have used some mechanical apparatus for drawing

them^ How far he proceeded in the geometry of conics can be

guessed only from two very neat solutions of the duplication

problem, which are attributed to him by Eutocius®. Menaech-

mus observed that \i a : x v. x
: y :: y : h, then ay = x^, y^ — hx.

If through the point G there be described two parabolas, one

1 These names were invented not by

Menaechmus but by Apollonius of

Perga, a century later. That Menaech-

mus used the names “section of right-

angled cone” etc. is attested by Pappus,

VII. (ed. Hultsch), p. 672.

2 Compare Eratosthenes again in

Eutocius, ed. Torelli, p. 144, and the

reproach of Plato against Menaechmus.

Eutocius (a little earlier) says that his

own master, Isodorus of Miletus, had

invented a compass {diap-qTrjs) for draw-

ing parabolas. Bretschneider (p. 170),

says that a modern geometer would

suppose that the notion of loci pre-

ceded the conic sections, but that in

fact the ancients always regarded

conics in the cone itself : the foci of

the ellipse and hyperbola are only just

mentioned by Apollonius and charac-

terised by two of their simplest pro-

perties: the focus of the parabola is

not mentioned at all. But Mr Taylor

[Ancient and Modern Conics^ pp. xxxi

—^xxxni. and xliii.) suggests that the

conic sections may have been discover-

ed as plane loci in investigations of the

duplication problem. In support of

this he urges that Menaechmus used a

machine for drawing conics, that in

his solutions of the duplication pro-

blem he uses only the parabola and

hyperbola, and that the ellipse, the

most obvious of the sections, is treated

last by Apollonius. He admits, how-

ever, that the conception of a conic as

a plane locus was immediately lost.

^ Archimed. ed. Torelli, p. 141. Bret-

schneider, pp. 159—161. Cantor, pp.

198, 199. Hankcl, p. 155. Eutocius
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with parameter a and axis AG, the other with parameter h and

axis BG, they will cut one another in a point P of which the

co-ordinates GX, GY are the desired mean proportionals, oc and y.

Secondly, since xy = ah, the same point P may he found as

the point of section between one of these parabolas and a

hyperbola, of which OX and GY are asymptotes, subject to the

condition that the rectangle contained by the straight lines

drawn from any point on the hyperbola parallel to one

asymptote and meeting the other, shall be equal to ah. The

learning of Menaechmus, indicated by these solutions, is very

considerable, and it is not surprising to find that before

the century was out Aristaeus “the elder (about B.c. 320)

wrote an “Elements of Conic Sections” in five books, which,

according to Pappus, Euclid highly approved b Menaechmus is

said to have been the teacher of Alexander the Great, who
asked him whether he could not make his instructions some-

what shorter. To this Menaechmus replied in the famous

words, “ There is no royal road to geometry^” The brother of

Menaechmus, Dinostratus, was also a great geometer. It was

he who as stated above (p. 163) used the quadratrix of Hippias

for the solution both of the trisection and the duplication

problems. Nothing more than this, however, is known of him.

gives both analysis and synthesis. The

form in the text is HankeTs, and con-

tains of course (as indeed does that

of Eutocius) technical terms which

Menaechmus knew nothing of. It

gives the solutions also in a different

order from Eutocius.

1 Pappus VII. Fraef. {ed. Hultsch),

pp. 672, 676. This Aristaeus wrote

also on the regular solids. Cantor, p.

212. Curves of all kinds were at this

time called Td-rroi dtc^oSiKoi or “running

loci.” The straight lipe and circle

were called “plane loci” {tSttol iiri-

Tredoi) the conic sections “solid loci”

(crrepeol) and all other curves beside

these were called “linear loci” {ypa/x-

fiLKoi) or, from the manner of their

construction, “mechanical loci” (firi-

XavtKoi). Hankel, p. 152. Cantor, p.

214, quoting Pappus uti sup. pp. 662,

672. Pappus seems to say that Aris-

taeus wrote two books, one on Conics,

the other on Solid Loci. Cantor {loc.

cit.) suggests that the second was a

series of solutions in which the conic

sections were used. Viviani restored it

eonjeeturally {puh. 1701). Chasles, p.

In. Cantor (p. 197) says that the word

rbiro^ first occurs, in its geometrical

sense, in Eutocius’ report of Archytas

on duplication, but this is erroneous.

The word rbiro^ there means only

“place.”

'2 Bretschneider, pp. 162—163. Sto-

baeus Florileg. ed. Meineke, iv. p.

205. The same story, however, is told

of Euclid and King Ptolemy.



188 GREEK GEOMETRY TO EUCLID.

save what the Eudemian summary relates, viz, that he and

Menaechmus and Amyclas “ made the whole of geometry yet

more perfect.” After these names the same catalogue gives

others, for which also it is the sole authority, Theudius of

Magnesia wrote yet another and further improved ‘ Elements ’

:

he and Cyzicenus of Athens were Platonists, like Amyclas.

Hermotimus of Colophon added yet more to the Elements and

wrote on Loci. Philippus of Mende, another Platonist, tried to

find in geometry illustrations of the Academic philosophy.

This name finally brings the history of geometry down to the

time of Eudemus^ himself, and with it the Eudemian summary

closes. The next great name in Greek geometry is Euclid

but with him the scene is shifted and mathematics desert

Athens for Alexandria.

114 . The Athenian school, however, should not be left,

without a word on that great philosopher who, for nearly 2000

years, was in all subjects “the master of those who know.”

Aristotle (b.c. 384—322) was not, any more than Plato, a

professed mathematician, but, like Plato, he was learned in the

mathematics of his day and was above all things interested in

correct reasoning on every subject. The man who systematized

deductive logic must be admitted to have performed a great

service to geometry. But Aristotle’s benefits are not confined

to this. He is the author or the improver of many of the most

difficult geometrical definitions {vide supra, p. Vj^onn). One of

these, which has not yet been quoted, may be here given. He
defined continuity as follows. “ A thing is continuous {avvex^<^)

when of any two successive parts the limits, at which they

touch, are one and the same, and are, as the word implies, held

together I” Hence, he said in answer to Zeno, motion is not, like

counting, a discrete operation, a series of jerks : the moved

thing does not stop at the stages which the calculator chooses to

make. The interest which Aristotle took in these inquiries

accounts for the fact that the sole extant Greek work in which

,

1 Eudemus was a native of Rhodes, petent historian of geometry,

but a pupil of Aristotle. Proclus says ^ Phys. iii. e. 3. 227, a. 10. Insec.

he wrote xepl yuvias, ‘on the angle,’ so Lin. 969, a. 30.

it may be inferred that he was a com-
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before Archimedes, geometry is applied to mechanics is at-

tributed to him. The passage in the Physics which contains

a hint of the principle of virtual velocity has been cited above

(p. 105n)h The Mechanica, which is perhaps not Aristotle’s,

though certainly of his time, is a series of 35 questions, mostly

on the performances of various levers^ The explanation here

given of the lever is founded on the observation that, in a

revolving circle, the circumference moves faster than the parts

near the centre : the power, therefore, at the end of a lever

overcomes the w^eight by its superior velocity. This explan-

ation leads to the correct inference (Qu. 3) that if two weights

keep a lever in equilibrium, they are to one another in the

inverse proportion of the arms of the lever. Nearly all the

questions are answered by reference to one or other of these facts.

The book contains many errors but is worth noticing as evidence

that, about this time, questions were asked which ultimately

lead to a correct theory of mechanics.

115 , There remains still to be mentioned another writer,

who lived about 330 B.c. and whose works, still unpublished,

are the oldest of extant Greek mathematical treatises. This is

Autolycus of Pitane in JEolis, an astronomer of whom nothing

is known save that he wrote two elementary works on the

apparent motion of the sun and stars^ The first (in 12

1 Too much stress should not be laid

on this passage, for Aristotle goes on

immediately to say that if A moves B
a distance T in time A, it does not

follow that — will move B a distance
z

r A— in the same time, for — may not be
z z

able to move B at all. A hundred men
may drag a ship a hundred yards, but

it does not follow that one man can

drag it one yard.

2 The questions are of great variety,

both in subject and in merit : e.g.

‘ Why are carriages with large wheels

easier to move than those with small ?
’

(Q. 11). ‘Why are pebbles on the sea-

shore round?’ (Q. 15) ‘Why is it

easier to extract teeth with the forceps

than with the fingers?’ (Q. 21). ‘Why
in rising from a seat do we lean the

body forward at an acute angle with the

thigh?’ (Q. 30). ‘Why does a missile,

once thrown, ever stop?’ (Q.33). ‘Why
do objects in a whirlpool move towards

the centre?’ (Q. 36).

® An account of both is given by

Delambre. Hist. Astron. i. c. ii. pp.

19—48. They exist in 3 mss. at Ox-

ford, but are published only in a Latin

translation by Auria (Rome, 1587.

1588). Delambre used Dasypodius’

Sphaericae Doctrinae Propositiones

(Strasburg, 1572), which contains only

the enunciations of Autolycus.
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propositions) is called “ on the moving sphere (wepl KLvov/jbivrjf;

(T<f>aipa<;). The sphere is supposed to revolve uniformly and to

be divided by a great circle (not called the horizon ” but drawn

obliquely to the axis) so that half of the sphere is always invisible.

The propositions which are of an excessively simple character,

relate to the appearance, disappearance and reappearance, of

various points on the sphere. The same subject is dealt with

more particularly in the other work, “ On Eisings and Settings
”

{irepl eiTLTdXwv /cal Bvaecov), which is in two books, the first of

13, the second of 18 props. Here Autolycus premises that

the rising or setting of any star is invisible unless the sun be at

least 15® (measured on the ecliptic) below the horizon h The

propositions, which are very obscurely worded, consist mostly of

deductions from this fact as to the time both of the night and

of the year at which or during which a particular star will be

visible. The results are of the most general character, to the

effect that after a given phenomenon certain others will happen

at certain times or in a certain order^.

116 . A brief summary may here be added of the progress

of Greek geometry up to 300 B.C., the date at which the

Alexandrian school may be taken to arise, and which begins the

most brilliant century in the history of Greek mathematics.

It will be remembered that Thales about 580 B.c. introduced

the Egyptian geometry into Ionia : Pythagoras about 530 B. c.

introduced it into Magna Graecia. In these places, the extreme

Eastern and Western limits of Hellas, mathematical schools

survived for nearly 200 years, but the Ionian was by far the

less meritorious of the two. This school seems to have been

concerned chiefly with the geometry of angles, the Pythagorean

chiefly with the geometry of areas and the theory of proportion.

To the former we owe much of Euclid’s 1st Book, to the latter,

no doubt, the 2nd, and the foundations of the 4th, 5th, and 6th,

1 Autolycus divides the ecliptic not

into degrees but into 12 parts {Sudena-

TTjfjidpiai) of 30® each.

^ Delambre proves many of the pro-

positions for Arcturus and Aldebarau

supposed to be observed from Thebes in

360 B.c. He also, in his usual scorn-

ful manner, reduces the whole book

to a few trigonometrical formulae.
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Books. Before these schools were extinct, the Sophists about

450 B.C. introduced geometry to Athens; and here, under the

stimulus of three insoluble problems, arises the geometry of the

circle and other curves (with Hippias and Hippocrates)
;

still

later the geometry of conics in particular, and of loci, stereometry,

mechanics and astronomy. But it is not to be supposed that

during this time any department of geometry was the peculiar

study of any place. Intercommunication was so frequent and

rapid that the Pythagoreans of Italy and Sicily and the

Atomists of Abdera, no doubt, were acquainted soon with the

last geometrical discovery of Athens, and vice versa. The syste-

matization of geometrical methods and the orderly arrangement

of elementary text-books, since Hippocrates wrote the first, had

specially occupied the attention of the Platonic school. Thus it

was that the substance of nearly all the geometry of Euclid’s

elements was known, before Euclid’s time, the forms of geo-

metrical proof were settled, and the arrangement of at least large

fragments of geometry was practically determined. To collect

these fragments and connect them where necessary, and to

embellish the proofs, was the chief work which was left for o

<7To^%6tft)T?79, the writer of the Elements par excellence.



CHAPTER VII.

Euclid, Archimedes and Apollonius.

117 . It has been already pointed out that the conditions of

life in Athens were unfavourable to the growth of any ‘"natural”

science. Her practical men were absorbed in politics, her

philosophers in metaphysical speculation. Neither of these

classes objected to deductive science, for deduction is the chief

instrument of rhetoric and is also the most interesting part

of logic : but the patient and unrewarded industry, which leai^s

to inductive science, was not to the Athenian taste. The

practical men thought it profane, the philosophers vulgar. The

schools of inductive science remained therefore far away from

the turmoil of Athens; the observatories of the astronomers

were at Cyzicus on the Hellespont or at Cnidus on the south

coast of Asia Minor: the school of medicine was maintained by

one illustrious family in the island of Cos. If it be objected

that Aristotle lived in Athens, the answer is that Aristotle was

the son of a physician, was not born or bred in Athens, never

became an Athenian citizen, disliked Athens and left it, and

was not able to command in Athens an audience for anything

but metaphysics. The Peripatetic school was as unscientific as

the Platonic. There was not yet a “university,” to which all

the world might come and learn all the knowledge that was in

existence. Alexandria was the first city to deserve that name.

Athens might have won it, but when Athenian politics were no

'^'mofl'^nd the field was free for other pursuits, Alexandria had

forestalled her.
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118 ,
The political supremacy of Athens was first broken by

the Peloponnesian War (b.c. 431—404). During the next 50

years she was slowly recovering, but in the meantime a more

powerful enemy was growing in the North and the Macedonian

phalanx was in training for the subjugation of Greece. It came

down at last (352 B.c.) under the command of Philip, the father

of Alexander the Great. In the struggle that followed, Athens

once more took the lead
;
but she was beaten at Chaeronea

(338 B.c.) and never held up her head again. Alexander

succeeded his father in 336 B.c. and, after securing his power

over Greece, started on his unparalleled career of conquest. In

thirteen years he scoured the earth from Macedonia to the

Indus, from the Caspian to the cataracts of the Nile, and left

behind him, wherever he went, a monument of his visit in the

shape of a new city, founded on some aptly chosen position, to

be at once a fortress and a centre of commerce\ In this way

Alexandria was founded in B.c. 332, when Alexander turned

from Palestine into Egypt. The site was chosen, the ground-plan

drawn and the mode of colonization directed,byAlexander himself,

but the building of the city, which was entrusted to Dinocrates,

the architect of the temple of Diana at Ephesus, w^as not com-

pleted till many years afterwards. The structure, when finished,

was worthy of the site and Alexandria seemed to Ammianus
Marcellinus still, in the 4th century after Christ, “vertex

omnium civitatum,” the noblest of all cities. It was divided

into three districts, Greek, Jewish and Egyptian, for Alexander

was above all things cosmopolitan and deliberately attempted,

on many occasions, to break down the barriers of race and

1 Besides Alexandria in Egypt, he

founded at least 17 other Alexandrias

(not to mention other cities) in dif-

ferent parts of central Asia. Herat,

Candahar and probably also Merv,

attest the excellence of his judgment.

The abundance of Greek coins which

are still current in the bazaars of

Afghanistan and the signs of the in-

fluence of Greek sculpture and archi-

tecture which everywhere abound in

G. G. M.

those regions, show how successfully

they were opened up to Greek com-

merce and civilization. Alexander’s

example in this respect was followed by
his successors. Ten cities of Antiochia ,

six of Seleucia, six of Apamea, and six,

of Laodicea were built in a sh(Jrt time

by the kings of Syria : and similarly

in Egypt the Ptolemies studJ^d the

coasts with cities of Ptolemais, Arsinoe,

Berenice.

13
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creed\ It became at once the meeting-place of all the most

important trade-routes; Greek, Egyptian, Arabian and Indian

produce passed through it and brought with them a motley host

of new settlers. The travels of Alexander had excited through-

out the civilized races a new and burning curiosity to see and

know more of one another and of the world, and the place

where of all others this curiosity could best be satisfied, was

Alexandria.

To the sovereignty of this magnificent city Ptolemy, the son

of Lagus, succeeded on the partition of Alexander’s empire

after his death in 322 B.c. Ptolemy was a man who had

caught much of Alexander’s own enthusiasm, and it was he who
created the university of Alexandria. The university buildings

stood near the palace and were provided with lecture-rooms,

laboratories, museums, a zoological garden, promenades and other

accommodations, all clustered near the great Library. This

contained in the ^Ine of Ptolemy Philadelphus (about B.c. 260)

400.000 rolls, representing about 90,000 distinct works, and

there was another library in the Egyptian quarter, containing

about 40,000 works. The collections were afterwards greatly

increased and were always under the care of some distinguished

scholar. So equipped for the pursuit of learning, Alexandria

had yet another advantage, in that she enjoyed under the

Ptolemies for nearly 200 years a profound peace both internal

and external. A short period of conflict followed and then

again the 'majestas Eomanae pacis’ settled upon her and she

was free to pursue her old callings, of commerce on the one

side, of learning on the other. It is no wonder that to this haven

every student resorted and that to Alexandria we owe whatever

is best in the science of antiquity. Criticism, mathematics,

astronomy, geography, medicine, natural history, jurisprudence

LJ^.g. at Susa, in b.c. 325, he him- donians in the same phalanx. To the

self married Statira, daughter of Darius, cities which he founded he imported

and compelled 100 of his generals and colonists of all nations, and after his

10.000 of his soldiers to marry Persian death there was found, in his written

wives. At Babylon, in b.c. 323, he orders to Craterus, a plan for the

corporated 20,000 Persians in his wholesale transportation of inhabitants

army and mixed them with Mace- from Asia to Europe and vice versa.
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were for nearly a thousand years taught in her schools. Other

schools arose elsewhere (notably at Pergamum) on the model of

these, but none were so complete or so long-lived. Almost all

the mathematicians who remain to be mentioned in this history

were professors or. had been students in the University of

Alexandria.

119 . A distinguished Athenian, Demetrius Phalereus, was

invited to take charge of the Alexandrian-^Library and it

is probable that Euelid was invited, with him, to open the

mathematical school. |That Euclid lived and taught in Alexan -

dria is certain^ but intact nothing more is known of him save

what Proclus has added to the Eudemian summary, viz. that he

lived in the time of Ptolemy I. and was junior to Plato, senior

to Archimedes and Eratosthenes. The first Ptolemy reigned

B.c. 306—283, and these dates must be taken to determine the

period of Euclid’s greatest activity. Proclus^ says he was a

Platonist but adds immediately the obviously untrue state-

ment that the whole aim of the Elements was to show the

construction of the five regular solids, “the Platonic figures.” It

is true that the xilith Book concludes with the construction of

these solids, but it is not true that the whole of the preceding

books are designed purely for this purpose. It may, neverthe-

less, be that Euclid was a Platonist, for most of the geometers

who could have taught him, were of that school. All the

other historical notices of Euclid are either trivial or un-

trustworthy or false. Pappus* says that he was gentle and

amiable to all those who could in the least degree advance

mathematical science, but the context shows that Pappus here

refers not to Euclid’s personal conduct but to his criticism

of his predecessors. A little story related by Stobaeus^ is

perhaps authentic and is at least hen trovato. “ A youth who
had begun to read geometry with Euclid, when he had learnt

the first proposition, inquired ‘What do I get by learning these

^ Pappus, VII. 35, p. 678 (Hultsch’s is not genuine. It is given a loropos

ed.). of some disparaging remarks on Euclid

2 Ed. Friedlein, p. 68. by Apollonius of Perga. See the' pre-

3 Ed. Hultsch, VII. 34, pp. 676—678. face to his Conics, quoted mfra, p. 248,.

Hultsch, however, thinks the passage ^ Floril. iv. p. 250.

13—2
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things?’ So Euclid called his slave and said 'Give him three-

pence, since he must make gain out of what he learns.’” These

are almost the only personal details which Greek writers have

preserved, for in truth 'Euclid’ soon became with them, as it is

with us, synonymous with ‘Elementary Geometry Syrian and

Arabian writers however know a great deal more. They tell us

that Euclid’s father was Naucrates, his grandfather Zenarchus :

that he was a Greek who was born in Tyre and lived in

Damascus: that he was much later than Apollonius, whose

Elements he edited: that the name Euclides is derived from two

Greek words, ucU a ‘ key,’ and dis ' geometry,’ so that Euclides

means 'key to geonoetryV Much of this information is pure

invention^ the rest is founded on the preface to the xivth Book

of the Elements, which was written not by Euclid but by

Hypsicles. In the middle ages some new statements appear, for

Euclid was then always confused with Euclides of Megara^

a pupil of Socrates who founded a small philosophical school

which Plato greatly disliked. Dismissing these errors, we can

retain only the meagre biography that Euclid was a Greek who

lived and taught at Alexandria about 300 R.c^

120. The fame of Euclid, both in antiquity and in modern

times, has always rested mainly on his Elements {a-roL'^ela).

From this work he acquired among Greeks the special title of

^ So Aelian, Hist. Anim. vi. 57, says

that spiders can draw a circle and

“need not Euclid” (Eu/cXei5ou dhvrai

oiid^v). So an Arabian, Ibn Abbad,

quoted by Hadji Kalfa, maintained

that Euclid was the name of a book.

2 Casiri, Bihlioth. Arab. i. 339,

Abulpharagius, Hist. Dynast, p. 41,

Hadji Kalfa, Lexic. Bihliogr. i. p. 380

sqq. etc. The Arabian authorities on

Euclid’s life and writings are most care-

fully collected, discussed and rejected

by Heiberg, Litterar. gescTiiclitliclie

Studien uber Euldid. Leipzig, 1882,

pp. 1—21. This work will hereafter

be referred to as ‘Heiberg.’ Compare

also Cantor, p. 224, Hankel, p. 383.

3 The Arabs tried to claim Orien-

tal origin or education for all the

great Greek mathematicians. So Nasir

Eddin, who was born at Tus in Kho-

rassan, says that Euclid was born there

also.

^ E.g. Campano’s translation is de-

scribed in the colophon Opus Elemen-

torum Euclidis Megarensis (Venice,

1482). Many more examples of this

error are collected by Heiberg, pp. 23,

24. Diog. Laertius (ii. 106) says that

Euclides Megarensis was sometimes

said to have been a Sicilian from Gela.

Hence arose the very frequent state-

ment, that Euclid the geometer was a

Sicilian.
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6 (TTOLx^LcoTi]^, ‘the author of the ElementsV for he so completely

superseded his predecessors Hippocrates, Leon and Thetidius, that

not a trace of their works survives, and so completely satisfied

posterity that, until recent times, no attempt seems ever to

have been made to supersede the Elements as Euclid left them.

His success, moreover, was evidently immediate, for Archimedes

and Apollonius and “all the rest,’' as Proclus says^ “ treat the

Elements as perfectly well known and start from them.”

It is needless, in England, to describe this book with

any detaiP, or to criticise it. Every schoolboy possesses the

greater part of it and every one, who is likely to read these

pages, is able to recognise both its merits and some at least

of its defects k The space which is saved by omitting matter

which is so well known, may be better utilised by remarks

which do not find a place in English editions of Euclid.

It should be said then, what the preceding chapter has

1 See for instance, the beginning of

Heron’s Definitions, Hultsch’s ed. p. 7,

s. 1, and the last section of Marinus’

Pref. to Euclid’s Data, printed in

Gregory’s ed. of Euclid, pp. 453—459.

More reff. in Heiberg, pp. 29, 30.

2 Ed. Friedlein, p. 71, 16.

2 It may be useful, perhaps, to add

a short statement of the contents of

the xiiith Book, which is now seldom

seen. It is composed of 18 propositions.

The first five (attributed to Eudoxus)

relate to lines cut in extreme and mean
ratio. Suppose the whole line a, the

segments 6
,
c, of which h is the greater.

Then, prop.
1, ^6 +

conversely, (prop. 2) if this eq.uation

is assumed, 6 is the greater segment.

Prop. 3, =5 Qj
. Prop. 4,

a2 + c2=362. Prop. 5, If h be added to

, the line [a + 6) is divided in extreme

and mean ratio : 6(a+ 6) = a2. Prop.

, If a rational line be cut in extreme

and mean ratio, each segment is the

irrational line called airorofi-fi {supra,

p. 81). These props, are then applied

in an investigation chiefly of the re-

lations between the sides of a pentagon,

hexagon and decagon inscribed in the

same circle with one another and with

the diameter (props. 7—11). Prop. 12,

The square of the side of an equi-

lateral triangle inscribed in a circle is

three times the square of the radius.

Then follow five problems, to inscribe

in the same sphere (13). a pyramid, (14)

an octahedron, (15) a cube, (16) an

eicosahedron, (17) a dodecahedron and

to show the relations of their sides to

the diameter. In prop. 18 the sides of

these inscribed figures are compared

together. The reader will here see for

what purpose Book x. is inserted in

the Elements. Book xiv. was added

by Hypsicles, xv. probably by Damas-

cius of Damascus about a.d. 510.

^ A very neat and comprehensive

criticism is given by Prof, de Morgan

in the article Eucleides in Smith’s

Diet, of Gk. and Rom. Biogr.
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abundantly proved, that Euclid is certainly not the author of

all the propositions which are contained in the Elements. In

the whole collection there is only one proof (l. 47) which is

directly ascribed to him. Many more, no doubt, are his or

partly his\ but his merit, as Proclus (p. 69 of Friedlein’s ed.)

expressly says, lies chiefly in the selection and arrangement of

the propositions. The word ‘selection' (e/cXo^?;) implies that

some matter is omitted and Proclus again (pp. 72—74) ex-

pressly says that much which was not in itself generally useful,

or followed very easily from inserted propositions, was discarded

:

e. g. (p. 72, 13) the prop, that the perpendiculars drawn from

the angular points of a triangle to the opposite sides meet in a

point: (p. 74, 18) the construction of an isosceles or scalene

triangle, or propositions on unclassed irrational lines. Hence

not only Archimedes and Apollonius, but Euclid himself, refer

to and use, as well-known truths, propositions which are not

included in the Elements at all. Thus, to take only an in-

stance or two, in the Sectio Ganonis, prop. 2, Euclid says

“ I have learnt that if any series of numbers be in continued

proportion, and the first is a measure of the last, it is also

a measure of all the rest,” which is not stated in the Elements.

In the de Divisionihus, prop. 23 ^ he cites the fact that if

a : h> c : d, then a—h:b>c — d:d. In the Data, prop. 67,

(76 of Simson’s ed.) Euclid uses a proposition that, if in an

isosceles triangle a straight line be drawn from the vertex

to the base, then the square of one of the equal sides is equal to

the square of the straight line so drawn -f- the rectangle under

the segments of the basel (Simson adds a lemma to prove this.)

Evidence of this kind, which shows that Euclid used his dis-

cretion in rejecting available matter, which was unquestionably

useful for some purposes, shows also that he had a definite

1 Proclus, at the end of the Eu- a : h < c : d, which Archimedes also

demian summary, says that Euclid uses. Sph. et Cyl. ii. 9, ed. Torelli, p.

brought to irrefragable proof propo- 186. 12.

sitions which had been less strictly 3 ]?or many other examples see

proved by his predecessors (ra ixa\a- Heiberg, pp. 15, 31, 32, 53, ??. and reff.

KdoTfpou deiKvvfieva tols ^/nirpoaOeu). there given.

So in prop. 22 if ad < be, then
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design in the composition of the Elements. We may therefore,

perhaps, attribute to his deliberate choice all the characteristics

of the book. With Euclid the word crTOLx^la
^ no longer means

"'easiest” or "preliminary” propositions in geometry, but means

the whole of geometry, exclusive of certain subjects (the

geometry of conics and other higher curves), treated by one

method (that of synthesis) only. To him also perhaps may be

attributed that orderly method of proof by the regular stages of

general enunciation (TTporacrt?), particular statement (eV^ecrt?),

construction QcaTaaKevrj), proof (aTToSetft?), conclusion {aufiire-

pacTfia) and the addition of the final Q. E. D. (owep eSec Sel^at)

or Q. E. F. ipirep eBet Trotrja-ac) At any rate, Autolycus, just

before Euclid, knows only TTporaa-i^ and diroBec^ifi, Archimedes,

just after, often dispenses with irpoTaa-i'^ or The

design of the whole book, viz. to proceed from a few definitions

and axioms, by sure steps which are always of precisely the same

kind, to the furthest limits of the subject, is certainly Euclid’s,

and the pattern of each particular proof is of a piece with

the pattern of the whole book^

121 . Secondly, some remarks will not be out of place

on the text of Euclid as we have it. Theon of Alexandria, the

1 E tymologically, aToixeiov means any

one of a series {o-tolxos), one thing of a

number of similar things placedin a row.

Hence it comes to mean the elements

of which composite things are com-

pounded, e.g. the single sounds which

go to make a word or the parts of

speech (Arist. Poet. 20, 1 & 2), or

the four elements of which the uni-

verse was supposed to be made. With
Euclid the etymological meaning seems

to he uppermost. He calls his book

ra ffTOLxeioL because it is a connected

whole and each proposition leads to

another.

2 Proclus, pp. 203, 210.

3 Bretschneider (p. 21), Cantor (pp.

236, 237) and Heiberg (pp. 35, 36)

deny that Euclid invented this form

of proof, on the ground that Proclus

does not expressly attribute it to him,

and that large portions of Euclid (e.g.

Book V.) are attributed to Eudoxus

and other predecessors.

^ A few of Euclid’s Greek terms may
be here added from the definitions

(opoi). (TifjiJ.eiov= a point : evdeia ypajxfirj

= straight line ; iirKpaveia= superficies

:

eTTijreSos = plane
:

ywuia— angle : evdv-

7pa^^os= rectilineal: 6p66s= iigh.t: Kad-

€Tos= perpendicular : d,u^\vs

=

obtuse

:

o|ys= acute; cr%^/xa= figure : irepc^epeta

= circumference- There is no word

for radius, which is called t] ck too

Kivrpov {ypa[i}irj) . rerpayiavov= square

:

erepoixTjKrjs= oblong : eK^dWeadaL = to

be produced : iyypd^eadat — to be in-

scribed: irepiypd^eadai = to be circum-

scribed : bpioLaaxw^T^= similar figures:

dz'ri7r€xoj/06Ta=reciprocals: aKpov /cat

pbeaov \byov rerpt.'^adaL= to be cut in

extreme and mean ratio.
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father of Hypatia, says, in his commentary on the Almagest

(ed. Halma, i. p. 201), “that the sectors of equal circles are to

one another as the angles which they span (e(/)’ wv ^e^i^Ka-

cnv) has been proved by me {r]fuv) in my edition of the Elements

at the end of Book vi.” (vi. 33, pt. 2). From this it is evident

that Theon edited the Elements, and in fact all the MSS, which

first came to light are entitled ‘ after Theon s edition ’ or ‘ after

Theon’s lectures’ («7ro avvovacwv tojv @60) 1^09)^ For this reason,

on the one hand most commentators of the 16th century

supposed that Euclid had left only the enunciations but Theon

added the proofs'^, and, at a still later time, when this notion

was exploded, other commentators, especially Bobert Simson^,

attributed to Theon all the defects which they could not fail to

perceive in the Elements as they knew them. But at the

beginning of this century, among various other MSS. which

Napoleon sent to Paris from the Vatican library and which w'ere

restored after the peace in 1815, there was found one (Vat. 190)

of the 10th century, in which the second part of Euclid VI. 33

was written not with the text but in the margin. Many other

variations from the received text were also perceived in it

(e. g. the useless definition of compound ratio, VI. def. 5,

was omitted'^), and from these facts F. Peyrard, who printed

it (Paris, 1814—1818), concluded that he had here a copy

of Euclid anterior to Theon’s recension. Nevertheless the

variations between this MS. and the others, which give Theon’s

1 E.g. for the first title Cod. Flor.

Laur. XXVIII. 3 of the 10th or 11th

century, for the second Laur. xxviii. 1

of the 13th century. More in Heiberg,

p. 174.

2 Heiberg, p. 175, gives a great many
instances ; e. g. Xylander (Holtzmann)

in his German translation (Basil, 1562)

warns the reader that the demonstra-

tions were added ‘nit von jme dem
Euclid selbs’ but by other learned men,

Theon, Hypsicles, Campano etc. For

the contrary opinion see the quotations

from Sir Henry Savile in the Preface

to Gregory’s Euclid (1703).

3

See the conclusion of his notes.

“From the preceding notes, it is suf-

ficiently evident how much the Ele-

ments of Euclid, who was a most

accurate geometer, have been vitiated

and mutilated by ignorant editors,” etc.

^ Simson had, on his own authority,

rejected it. See his note to vi. 23. It

does not occur, nor does vi. 33, pt. 2,

in Campano’s translation (Venice, 1482)

from the Arabic, but though Campano’s

Arabic original was not the Theonic

text, it is not a close enough version of

Euclid to be useful for critical pur-

poses. Heiberg, p. 178.
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text, are not at all important and show that Theon, in the

main, confined himself to trifling verbal alterations.

It appears, however, from the citations contained in Proclus’

commentary on Eucl. i. that Proclus, though he did not use the

Theonic text, did not use the Vatican either or, if he did, was

sometimes dissatisfied with it: and it appears also, from

quotations in other authors, that the text of Euclid had for

many centuries been subject to criticism^ This criticism, it is

true, was, for the most part, of a verbal kind, but some real dis-

cussion seems to have taken place over the definitions (opot),

postulates (alry/nara), and axioms (KOLval evvoiaL, ‘common

notions’^) to Book i. Thus in our MSS. the definition now

printed as Hi. def. 6 (segment of a circle) is appended to the def. I.

18, but Proclus did not have it in that place^. This is not an

important matter, and, in fact. Heron, who lived about 100 B. c.,

quotes in his ‘Definitions’ all the definitions of Euclid, save the

arithmetical, in practically the same form, though not in

the same order, as that in which we now have them^ But the

postulates and axioms were the subject of more serious contro-

versy. Our editions have three postulates and twelve axioms,

of which the last three are 10 . Two straight lines cannot

enclose a space: 11 . All right angles are equal: 12 . If a

straight line meet two straight lines, so as to make the two

interior angles on the same side of it together less than two

right angles, these straight lines will meet if produced on that

side. Of these three, the first {Ax. 10) appears in many
ancient MSS. as Ax. 12, but in the Vatican as Postulate 6^

Proclus (p. 184, 8), however, who omits it altogether, says that

Geminus {cir. 60 B.c.) would reject it from the Axioms^ as

a proposition requiring proof, and himself (p. 239) gives a

1 Alexander Aphrod. in Arist. Anal.

Prior. (Venice, 1530) 87. a, quotes as

Euclid X. 4, the proposition which is

now Euclid x. 5 : and Eutocius in Apol-

lonii Conic, p. 44, quotes as Eucl. iii. 15

the prop, which is now Eucl. iii. 16.

Both these cases may be mere slips.

2 Euclid does not use the name
‘ axioms,’ d^tufj-ara, which Proclus has

(e.g. p. 193).

^ See Proclus, p. 158. The definition

is quoted in Heron (ed. Hultsch), Deff.

no. 33, but, curiously enough, Heron’s

no. 31 is Eucl. i. 18 and his no. 34 is

Eucl. III. 8, so that no inference can

be founded on this arrangement.

4 Heiberg, pp. 186—192.

5 Heiberg, p. 182, nn.
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proof in his commentary on i. The last two 11, 12)

are given by Proclus as Postulates 4, 5, and so also in the

Vatican MS. and the older MSS. of the Theonic recension.

But as to Post. 4 {Ax. 11), Proclus says (p. 188, 2) that

Geminus wished to take it from the postulates and add it

to the axioms, and as to Post. 5 {Ax. 12), he says (p. 191, 21)

that it ought to be struck out of the postulates and proved as a

theorem, like its converse, and for this opinion he again cites

Geminus as an authority^ With regard to Axioms 1—9,

Proclus says (p. 196, 15) that Heron wanted to admit only the

first three, and in fact Martianus Capella in the 4th century

{Nupt. Vi. 723) quotes only these three as ‘communes animi

conceptiones.’ Proclus himself quotes only five (viz. 1, 2, 3, 9, 8,

in this order), says (p. 1.97, 6) that Pappus added Axx. 4, 5,

though not in their present form, and himself expressly rejects

Axx. 6 and 7 (p. 196, 25), which stand in the Vatican and are

therefore older than Theon. The evidence, therefore, on the

whole, shows that Euclid originally wrote five postulates, of

which the fourth and fifth were those which are now printed as

Axx. 11 and 12, and perhaps four axioms, of which the first

three were the present Axx. 1—3, and the fourth was the

present Ax. 10. The number of the postulates is clearly

attested by Geminus, Proclus and the oldest MSS. : but of the

axioms we can only say, with certainty, that Nos. 4 and 5 are

due to Pappus and 11 and 12 are transferred from the postulates.

But though some reasonable doubt remains as to the

axioms, there is none at all as to the proofs of the propositions.

These are very seldom mentioned by ancient writers with

an exact reference to the number of the proposition nor are

whole proofs ever quoted, but there is no trace of any contro-

versy as to any Euclidean proof : the extracts of Proclus show

that he had Book i. almost word for word as it stands now, and

the Vatican MS. agrees, in all but trifling details, with the

1 Nevertheless, p. 193, 22 lie rejects vXrji).

it from the axioms as unnecessary, on ^ Ptolemy (in Proclus, pp. 362—368)

the ground that it merely describes ‘a attempted to prove it as theorem. See

characteristic of the subject-matter of post.

geometry’ (i'5td ecrri yeiofjLerpiKrjs
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copies of Theon’s recension. From this it is evident that the

defects of Euclid are of his own making and not, as Simson

would have it, the fault of bungling editors.

122. Lastly, it will perhaps be interesting to show what

have been the fortunes of Euclid’s Elements and how they have

come into the possession of English schoolboys and been made

the staple of our mathematical education^. In Alexandria this

book occupied the same place as with us, and Theon’s edition of

it was made, nearly 700 years after Euclid, for the benefit of

the students who attended the editor’s lectures. It does not,

however, seem to have been at all known in Italy, for Boethius,

who (about A. D. 500) wrote a Latin geometry, contents himself

with giving merely the enunciations of Book i. and of some

propositions in Books ill. and IV. of Euclid and adding at the

end, as a stimulus to the mind, the whole proofs of the first

three propositions of Book i. He then proceeds (in Book ii.) to

the calculation of areas etc. of given dimensions, the practical

geometry for which alone the Komans had any desire. Euclid

was the Greek text-book and was confined to Greek schools, or

to those which were founded on the model of Alexandria, such

as the Syrian schools of Antioch and Emesa and Damascus, and

in particular, the school of Nestorian Christians at Edessa.

These latter, after the terrible sack and ruin of Alexandria

in 640, became the chief repositories in the East of all Greek

learning. To them belonged the chief physicians of that

time, who were invited to Bagdad to attend upon the

Abbasid Caliphs^. The Arabs did not fail to remark that

these Jewish and Christian doctors relied upon the writings

1 Most of the facts given in this

section are taken from various chapters

of Hankel, pp. 231—237 (on Arabic

translations): pp. 307—317 (Gerbert

and his predecessors)
: pp. 334—348

(translations from the Arabic, etc.):

pp. 354—359 (Mathematics in foreign

Universities). I have added some tri-

fling details from Cantor, whose Vor-

lesungen Vol. i. only go as far as the

year 1200. Hankel’s account of the

Arabs is taken chiefly from Wenrich,

De Auctorum Graec. Versionihus Arab.

Syr. et Pers. Leipzig, 1842. Cantor

has a more recent authority, Krcmer,

Kulturgesch. des Orients unter den

(7/iaZi/en. (Vienna, 1877). English lite-

rature is ridiculously deficient in such

monographs.

2 It is said that the Arabs, when

they gave up the nomad life and settled

in Bagdad, became subject to various

disorders, which their native physicians

were unable to cure.
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of Hippocrates, Aristotle and Galen, and the medical books

of these three Greeks were therefore translated into Arabic from

the Syriac in the time of Harun al Raschid (786—809). An
intense interest in Greek science of every kind was thus aroused,

and in a few years translations of all the principal mathematical

books of Alexandria were secured. The Caliph Al Mamun^
(813—833) was especially zealous in this cause. He obtained

from the Byzantine empire, through his ambassadors, copies of

the Greek MSS. and established in Bagdad a college of Syrian

Christians who were nominally his physicians but were chiefly

engaged in translating the Greek books into Arabic. A little

earlier than this, in the time of Al Mansur (754—775), the

Arabian commerce with India had brought to the knowledge of

Bagdad the Siddhanta or ‘System’ of Brahmagupta^ This also

was translated and thus the Arabs acquired the Indian numeri-

cal symbols. The interest of Al Mamun in foreign science

was more than rivalled by his successors. The most famous of

the translators was one Honein ibn Ishak, a Syrian physician,

who was acquainted with both Greek and Arabic. He was

appointed, by the Caliph Mutawakkil (847—861), president of

the college of translators some of whom were busy in rendering

Greek books into Syriac, the rest in rendering the Syriac

into Arabic. Honein and his son, Ishak ibn Honein, revised

the final Arabic translations, but as they were both ill-versed in

mathematics, Tabit ibn Korra (836—901), another Syrian,

edited their texts with the knowledge of a competent mathe-

matician. It was in this way that the works of Euclid, Archi-

medes, Apollonius, Theodosius, Ptolemy and other Greeks re-

ceived a new lease of life among a strange peopled Ptolemy

seems to have been the first of these to be translated. A
portion of the Elements of Euclid was translated in the time of

1 See Gibbon’s Chapter lii.

2 Cantor, pp. 597, 598.

3 Diophantus was not translated till

the end of the 10th century (by Abul

Wefa). Arabian algebra however be-

gins in 820 with the Algehr w' al Muha-

bala of Mohammed ibia Musa Alchwar-

izmi, who cites no authorities but has

an advanced knowledge of his subject.

Hankel (p. 263) suggests that the Dio-

phantine analysis had become tradi-

tional in the Syrian schools. Cantor

(pp. 619, 620) leaves it an open ques-

tion whence Mohammed obtained his

Algebra.
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Harun al Kaschid : Al Mamun ordered another and a complete

translation, Honein or his son Ishak prepared a third, Tabit ibn

Korra published the final redaction.

But Euclid did not come into Europe from Bagdad. Some
fifty years before the Abbasid Caliphs settled in that city, the

Arabs had penetrated into Spain and taken possession of the

ancient city of Cordova. Here, in 747, the Emir Abdarrahman

founded a separate kingdom and the Arabs of Spain were

thenceforth wholly dissociated from their kinsmen in the East.

Both nations had the same intellectual tastes : each was as

enthusiastic as the other for medicine, mathematics and astro-

nomy, but each pursued its studies in its own way and with

some considerable jealousy of the other. Nevertheless, by some

means which has not been explained ^ the Arabs of Spain

acquired the same books which were used in Bagdad and had

also their Indian numerals, their Ptolemy, Euclid and Aristotle.

In the meantime, among the Christians of the West, learning

was at its lowest ebb. Their mathematical interest was con-

fined almost entirely to arithmetic and, as to geometry, ‘^we

find in the whole literature of that time hardly the slightest

sign that any one had gone further in this department of the

Quadrivium than the definitions of a triangle, square, circle or of

a pyramid or cone, as Martianus Capella and Isidor (Hispalensis,

bishop of Seville in 636) left theni^”^ The study was revived

by the great Gerbert, a native of Auvergne, born in the first

half of the 10th century. He, after a visit to Barcelona, where

perhaps he acquired somehow an inkling of the Arabic sciences^

became the teacher of the Cathedral school at Bheims and

acquired the greatest renown by his mathematical ability. He
was, after many other promotions, elected Pope in 1003, under

the name of Sylvester II. Gerbert, while abbot of Bobbio on

the Trebbia (about 980), came across the Codex Arcerius con-

1 Possibly Jewish pedlars of books

had something to do with it.

2 Hankel, pp. 307, 311, 312. Com-
pare Hallam, Middle Ages, in. chap,

ix. pt. 2, p. 420 (12th ed.).

3 Gerbert certainly knew no Arabic,

and the common statement that he

went to Cordova is for many reasons

incredible. Nevertheless, it was he

who introduced the Arabic numerals

(as apices) into the Western schools.

Hankel, pp. 327, 328, supra, pp. 37—39.
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taining the works of the old Koman surveyors (gromaticiy. He
studied them with avidity and founded on them his own
Geometry. A little later, he found at Mantua a copy of the

Geometry of Boethius. In this way the study of practical

geometry was renewed and some small portions of Euclid

became the common property of the Christian schools. But it

was not for 100 years yet that men began to seek the Arabic

text-books. The Moorish Universities of Cordova and Seville

and Granada were dangerous resorts for Christians and, though

it was known that all manner of learning was to be had there,

no student ventured to steal it. An Englishman was the first,

or one of the first two, to undertake the enterprise. In 1120,

Adelhard of Bath obtained in Spain a copy of Euclid’s Elements

and translated them into Latin. Translations from the Arabic

of other Greek works, especially those of Aristotle, soon followed^.

About 1186 Gherardo of Cremona made another translation

of the Elements and, again in 1260, Giovanni Campano repro-

duced Adelhard’s translation under his own name^ and ob-

tained with it a wide celebrity. The fruit of these translations

soon followed. In 1220, Leonardo of Pisa, a mathematician of

great power and originality, published his Practica Geometriae^

which though it deals with the calculation of areas and numeri-

cal ratios of spaces, is founded on Euclid and Archimedes and

Ptolemy^ and contains some trigonometry and conics. A little

later Roger Bacon (1214—1294) was urging the claims of

experimental science as taught by Aristotle. But the greatest

result of the inflow of Arabian learning was the organisation of

study in Universities. At Paris®, indeed, the study of geometry

1 See Cantor, pp. 467, 734, 738-743.

2 The Jews, who^were tolerated by

both Arabs and Christians, assisted

largely in this movement. See Jour-

dain, Rech. sur les Trad. Lat. d’Aris~

tote.

3 Prof, de Morgan first suspected

this. For a full bibliography of Euclid

see his art. Eucleides in Smith’s Die.

of Gr. and Rom. Biogr.

4 Hankel, pp. 344—346.

® Unofficial lectures of some kind

seem to have been given in Paris all

through the 11th century and even

earlier. But it was Abelard (1079—

1142) who made the University of

Paris famous. Similarly, all the other

Universities seem to have been at an

early time centres of instruction. But

it is in the 13th and 14th centuiies

that they first receive charters of in-

corporation. Paris received its charter

in 1200. See Hallam supra cit. pp.

420—427.
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was neglected and Aristotle’s logic was tlie favourite subject.

But at the reformation of the University in 1336 a rule was in-

troduced that no student should take a degree without attend-

ing lectures in mathematics and from the preface to a commen-

tary on the first six Books of Euclid, dated 1536, it appears that

a candidate for the degree of M.A. was then required to take

an oath that he had attended lectures on the said books. In

Leipzig (founded 1389), the daughter of Prague, a similar rule

was made, but it is doubted whether the rule was enforced,

since in the lists of lectures for the years 1437, 1438, none

on Euclid are mentioned'. But in Prague itself (founded 1350)

mathematics were more regarded. Candidates for the Baccalau-

reat were required to take up the treatise of the Globe by

Johannes de Sacrobosco (i.e. of Holywood in Yorkshire) and, for

the Masters degree, the first six Books of Euclid and many
subjects of applied mathematics were required. At Oxford, in

the middle of the 15th century, the first two books of Euclid

were read^ and no doubt the Cambridge curriculum was similar.

It will be seen, however, that though the study of geometry was

maintained (indeed it was part of the ancient Quadrivium) it was

maintained only in a half-hearted manner and did not produce

a tithe of the results which might have been expected from the

brilliant commencement of Leonardo of Pisa. It was, in fact,

driven out of the field by Aristotelian logic and the stupid

subtleties on which that logic was employed by the schoolmen.

Another Benaissance w^as still wanted. This came after

Constantinople was taken by the Turks in 1453 and a crowd of

Greeks fled into Italy bringing with them precious manuscripts

of Greek literature. About this time also printing was invented

and books became comparatively cheap and common. Cam-
pano’s (stolen) translation of Euclid was printed in 1482 by

^ Cologne, founded 1389, was equally

behindhand and so were the Italian

Universities of Bologna, Padua and
Pisa, where astrology was the favourite

subject. As late as 1598, the professor

of mathematics in Pisa was required to

lecture, not on the Almagest, but on the

Quadripartitum^ an astrological work

attributed to Ptolemy. Hankel, p, 357.

3 Chorton’s Life of Smyth, p. 151,

quoted by Hallam Lit, of Eur. Pt. i.

ch. 2, 3. 34, 71. I have been unable to

find any statement of the Gambridga

course.
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Ernest Ratdolt at Venice, and many times afterwards. The

Greek text was printed in 1533 by Simon Grynseus at Basle.

Even still it cannot be pretended that Euclid or any other

mathematician occupied anything like the same amount of

attention as the writers of belles lettres. Nevertheless a con-

siderable number of commentaries were produced in the 16tb

century and in 1570 an English translation from the Latin

was published (by Henry Billingsley). About the same time

Sir Henry Savile began to give unpaid lectures on the Greek

geometers at Oxford. In 1619, the Savilian professorships were

founded in that University, but it was not till 1663 that

a professorship of mathematics (the Lowndean) was given to

Cambridge'. The 70 years or so, from 1660 to 1730, when

Wallis and Halley were professors at Oxford, Barrow and

Newton at Cambridge, were the period during which the study

of Greek geometry was at its height in England. After

Newton’s time the whole field of mathematics and natural philo-

sophy was so rapidly enlarged that the Greeks, all except Euclid,

fell into neglect. But as modem learning advanced, so also

it became necessary that boys leaving school for the Universities

should take with them some preliminary knowledge of mathe-

matics and should stay at school longer to acquire this^ For

this purpose Euclid’s Elements was especially suited, but it may
be safely guessed that its place among our schoolbooks dates

only from the middle of the last century at the earliest. To

1 Sir Thomas Gresham founded a

professorship of geometry in London

in 1596. Briggs, a Cambridge man,

was the first professor but afterwards

became the first Savilian professor of

geometry at Oxford. At the latter

place, he began lecturing on Eucl. i.

prop. 9, at which Savile had himself

left off. The mathematicians of this

time were more interested in algebra

than geometry. Lord Herbert of Cher-

bury (1581—1648), in his Autobiogra-

phy, says that he sees little use in

geometry for gentlemen, though it may
perhaps help them to understand for-

tification.

2 This statement and the next are

made without much authority. I have

looked through all manner of biogra-

phies and “memorials ” without finding

any useful information on the curricu-

lum of a public school before 1750. The

evidence is abundant that, during the

last century, the average age of fresh-

men was gradually increasing. It may
be gathered (e.g. from Wordsworth’s

Scholae Academ. ch. vii. and app. iii.)

that, during the same time, Euclid was

gradually passing from the Universities

to the schools. There is obviously

some connexion between the two facts.

When boys stayed longer at school.
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this time belong also all the famous editions of Euclid in

England, from Gregory’s Greek text (pub. 1703) to Simson’s

translation and commentary (pub. 1756) upon which all sub-

sequent editions have been more or less founded. Attempts

have recently been made to depose Euclid from his place in

the English educational system, but they are not likely to be

successful. No modem text-book can acquire an equal prestige

and the advantage to teachers, in knowing that all their pupils

possess and have studied the same rudimentary treatise, is not

lightly to be foregone.

123. The extant works of Euclid comprise, beside the

Elements, books of Data {/leBofieva), ^aivojaeva ('appearances of

the heavens’), 'OirriKd, K.aro'irrpLKd (‘Reflections’), Kararo^ix^

Kdi/oi/o? (‘Division of the Scale’), a probably spurious ^Icra^coYn

^AppLovLKT] (‘ Introduction to Harmony’), and a work De Divisioni-

hits, known only in the Arabic and in a Latin translation from

another Arabic edition.

The Data, the authenticity of which is attested by Pappus^

consists of 95 propositions (Pappus knew only 90), preceded

now by an explanatory introduction written by Marinus of

Neapolis, a pupil of Proclus, at the end of the 5th century.

The book, which is printed in Simson’s Euclid with many
alterations, begins with some definitions declaring the meaning

of the word SeSopivov in various cases^: e.g. 1. Spaces, lines

and angles, are said to be given in magnitude when equals

to them can be found : 4. Points, lines and spaces are said

to be given in position, which have always the same situation

[and v/hich are either actually exhibited or can be found,

Simson] : 6. A circle is said to be given in position and in

magnitude when the centre is given in position, the radius

in magnitude. The propositions which follow deal with rnagni-

they would necessarily begin to learn

higher subjects. But why did they stay

longer at school? The answer sug-

gested in the text is inadequate but is no

doubt correct. Classical studies at the

Universities are not, and never were,

much different from those of schools.

^ VII, ed. Hultsch, pp. 638—640.

G. G. M.

2 Marinus says that Euclid ought to

have started with a general definition

of “given” and, after discussing many
suchhimself

,
concludes with the opinion

that the best definition is “knowable

and obtainable” {'yvupifiov xal Tropc/j.oi'),

Gregory, pp. 457, 458.

14
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tudes, lines, rectilineal figures and circles, in this order. The
following specimens will sufficiently show their character. Prop.

VIII. (Simson, 9) : Magnitudes which have a given ratio to the

same magnitude have also a given ratio to one another. . Prop.

XXXIL (35) : If a straight line be drawn between two parallel

straight lines given in position, and make given angles with them,

the straight line is given in magnitude. Prop, xxxix. (42):

If each of the sides of a triangle be given in magnitude,

the triangle is given in species. Prop. Lii. (56) : If a recti-

lineal figure, given in species, he described on a straight line

given in magnitude, the figure is given in magnitude. Prop.

LXXXIX. (92) : If a straight line, given in magnitude, be drawn

within a circle given in magnitude, it shall cut off a segment

containing a given angle. The word ^ given,’ it will be seen, is

employed in two significations. It means first ‘actually given*

and secondly, ‘given by implication/ and the propositions are

all to this effect, that a certain partial description of a certain

magnitude, or of a certain geometrical fi^re, involves a more

complete description, just as the description of a triangle as

equilateral involves its description as equiangular. The book,

in fact, is a series of easy riders on the Elements. The proof

of the prop. LXXXIX. stated above, will serve well enough as a

specimen. By def, 1 the angle is ‘ given/ if equals to it can be

found. Now let the straight line .4(7,given in magnitude, be drawn

within the circle ABG given in magnitude. It shall cut off a

segment containing a given angle. Draw
AEy passing through the centre, and join

EC, Then because each of the straight

lines AGf AE is given, their ratio is

given: and the angle ACE is a right

angle, therefore the triangle AGE is

given in species and consequently the

angle AEG is given (i.e. can always be

reproduced). But the Data had a special use in Greek
geometry. They are described by Pappus and Marinus^ as

forming part of the T07ro9 dvaXvojjievo^, This was the name of

a special department of geometry, “matter prepared for those

^ Marinus in Gregory’s Euclid, p. 458.
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who, after going through the Elements, wish to acquire the

power of solving problems proposed to them and usefid for this

purpose only\” a course of practice in analysis. The way in which

the Data were found serviceable in analysis will be seen at once

by reference to the specimen of analysis given above (p. 178)

from Pappus. Analysis begins with a construction which is

assumed to satisfy the proposed conditions. These conditions

being thus converted into given elements of the figure, involve

others which are given by implication in the Euclidean sense,

and these again involve more, until by steps, every one of which

is legitimate, we reach a construction from which a sjmthesis

is obtainable. The Data are hints upon the most usual steps

in analysis.

The Phaenomenm is a book of 18 propositions with a preface.

The authenticity of this also is attested by Pappus^ who gives

some lemmas, or explanatory propositions to it. The preface is

a statement of the considerations which show that the universe

is a sphere, followed by some definitions of technical terms.

Among these opl^coi/, as a substantive, and jjLecT7jfMl3ptv6<; kvkXo^,

meridian circle, occur for the first time. The book consists of

geometrical proofs of propositions which are established by

observation, to the effect chiefly that stars situate in given

positions rise or set together or one after another in a certain

order. It is beyond question founded on the Moving Sphere of

1 Pappus, VII. ed. Hultsch, p. 634.

In the same place it is said that the

rhiro^ dya\v6fjL€voi was written entirely

by Euclid, ApoUonius and Aristaeus

the elder. The word rdros here does

not mean locus, but has its Aristotelian

meaning of ‘store-house.’ So, at the be-

ginning of Book VI. of Pappus rdiros dtr-

rpovonoviievo<: means ‘the astronomical

treasury,’ consisting of books which

he afterwards discusses. Tottos dva\ii6-

/leyos means “the treasury of analysis,”

just as in Aristotle’s rhetoric tSttoi, or

Kotvol TOToi are collections of “ common-
places,”remarksand criticisms to which
the rhetorician may always resort. The

translation of tottos dya\v6/j.evos as

Hocus resolutus,' Hieu resolu’ or ‘mi/-

geloster OrV is therefore misleading

and has led, I believe, to some mis-

conception. See the translation in

Chasles, Les Porisvies etc. p. 16.

* VI. (Hxiltsch), pp. 594—632. The
text which Pappus used was not quite

the same as that of Gregory’s edition,

which has a great many evident inter-

polations. These are discussed by

Heiberg (pp. 47—52), who has found at

Vienna a better MS. On the Phae-

nomena see also Delambre, Astr. Anc.

I. ch. 3, pp. 48—60.

14—2
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Autolycus, which is several times referred to, though not by
name\ But it is evident also that Euclid is here quoting some

work on Spherical Geometry, by an unknown author. In

the preface,-for instance, he cites casually the fact that if on

a sphere two circles bisect one another, they are both great

circles, and in the proofs he very frequently assumes in his reader

a knowledge of other such theorems^. A comparison of these

with the later Spkaerica of Theodosius shows that both Euclid

and his successor had recourse to the same original work, which

perhaps was written by Eudoxus.

The Optics, as commonly printed ^ consists of 61 propositions

preceded by a preface and a list of assumptions (Secret?). The book

has often been suspected because these assumptions are absurdly

wrong and some of the proofs are, in the present text, slovenly

or defective^. There seems, however, no fair reason for denying

its authenticity, which is attested by Theon in many passages of

his commentary on the Almagest. Pappus, though he does

not name the book, cites some propositions from it just before

he passes to Euclid’s PhaemmeTia^. The preface, which is

obviously not by Euclid, is part of a report of a discourse

on Optics. It begins, for instance, with the words “After

proving the theorems concerning sight, he proceeded to advance

some suggestions, arguing that light is carried in straight lines”

etc. A scholiast has added at the beginning of a Paris MS.®

^ E.g. Prop. 1 of Autolycus is cited

in Euclid’s 5th, Prop. 2 in Euclid’s

4th and 6th, Prop. 10 in Euclid’s 2nd.

See Gregory’s ed. pp. 564, 567—569.

Heiberg, pp. 41, 42.

2 A full collection in Heiberg, pp.

43—46. The instances are difficult to

cite because Euclid does not actually

state thetheorems,but says,for instance,

in the course of a proof, “since in a

sphere the circles ABC, DEF touch

one another and the great circle GHK
passes through the poles of one circle

and the point of contact of both, there-

fore GHK passes through the poles of

DEF and is perpendicular to it.”

(Prop. II. p. 564.)

3 In Gregory’s edition with notes by

Savile. Gregory suspects the book,

Peyrard rejects it altogether. Heiberg

(pp. 93—129) prints an improved text

in 62 props, from a Vienna MS., which

he thinks is genuine.
* Such suspicion is protested against

byKepler (Epp. ad L Kepler cm.)quoted

by Heiberg, p. 90, from E. Wilde, Optik

der Griecken, p. 9 n. On the Optics,

see also Delambre, loc. cit.

5 Pappus VI. p, 568. The proposi-

tions cited are Nos. 35, 36, 37 of Gre-

gory’s ed. See Gregory’s preface and
Heiberg, pp. 130, 131.

® Heiberg, p. 139.
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the words ‘"the preface is taken from the commentary of Theon,”

and this may well be true, for the preface is quoted by ISTeme-

sius' who lived as early as the year 400. It is merely a

number of notes on the Euclidean hypothesis that light pro-

ceeds from the eye and not from the object seen. The contrary

is shown to be absurd by such arguments as these, that, if light

proceeded from the object, then we should not, as we often

do, fail to observe a needle on the floor, and a circle seen edge-

ways would not appear to be a straight line. The assumptions

(Oicret,^, positiones, 12 in number) are such as 1. Kays emitted

from the eye are carried in straight lines, distant by an interval

from one another: 2. The figure contained by such rays is

a cone, having its vertex in the eye, its base on the object

seen^: 5. Things seen under a greater angle seem greater:

8. Things seen by the higher rays seem higher, etc. The

propositions, which are proved from these assumptions with

the aid of the Elements and Data, are of the following kind.

I. No object is seen in toto at one time : VI. Parallel intervals

seen from a distance seem of unequal width : xviii—xxi. To

measure a given altitude, depth or longitude (proved by similar

triangles in the manner attributed above, p. 141, to Thales): XL.

The wheels of chariots appear now circular, now elliptical (wape-

cnracTfji^evoL) etc. Prop. XXII. is ‘ If a circle be described in the

same plane as the eye, it will seem to be a straight line.’

The proof is as follows^. Suppose the eye

at A : the circle BZF in the same plane.

The rays AB, AZ, AF proceed from the

eye. Since (by prop. I.) no object is seen

in toto at once, the circumference BZ will

not be seen, but only its extreme points B
and Z, wherefore the circumference BZ will

appear to be a straight line. And similarly

^ Ilepl (pvcrcws dLvdpdnrov, ed. Matthaei depends on the assumption that the

vn. p. 179. line MB, being seen under a greater

2 So also Arist. Prohl. xv. 5. angle than MA, appears longer etc.

^ Another proof attributed to Pappus Aristotle Problem, xv. 5 gives a similar

in Gregory’s ed. p. 617, but given as explanation.

Euclid’s in Heiberg’s text Ky\ p. 102,
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the circumference ZF. Therefore the whole circumference BF
will appear a straight line.

The Catoptrica is a book of 81 propositions on reflections in

plane, convex and concave mirrors. It begins with assumptions

of the same character as those in the Optics, to which are

added four admitted phaenomena ^ the last of which is that a

ring placed in a vase so as to be invisible from a certain

position, may be made visible from the same position by filling

the vase with water. The propositions start with proving that

the angle of incidence is equal to the angle of reflection and go

on to give reasons for such familiar facts as that in a convex

mirror objects seem smaller and, in a concave, are seen upside

down. But though Euclid certainly wrote a Catoptrica, which he

mentions in the Optics (Prop. XX. of Heiberg’s text, p. 101, 1.

25), it is in the highest degree improbable that he wrote this

one. The book is not cited by any ancient author. Heron’s

Ccutoptrica is cited for propositions which occur in Euclid and

the explanation of the phenomenon, above mentioned, is ex-

pressly attributed to Archimedes, who suggested that the water

acted as a mirror*. Probably Euclid’s original work was super-

seded entirely by Archimedes and the extant Catoptrica is the

work of a later compiler *.

The Sectio Canonis is a work on musical inteiwals, which is

probably Euclid’s, who, according to Proclus (p. 69) and other

commentators wrote an Elements of Music, but the Introductio

Harmonica is mainly a collection of musical terms, not agreeing

with the Sectio Canonis, and is generally rejected*. It remains

only to mention the book irepl Biaipeaecov, which is ascribed to

Euclid by Proclus (pp. 69, 144). We have this in a Latin

translation {De Divisionihus) made by John Dee, about 1563,

from an incomplete Arabic copy attributed to Mohammed
Bagdadinus. Woepcke subsequently found another and pro-

1 The first three are false. So also

are a great many propositions. The
most curious slip is that Prop. 5 proves

the contrary of Prop. 6. For a long

list of errors and inconsistencies see

Gregory’s Frefatio.

* Olympiodorus in Arist. Meteorol.

II, p. ">4 (ed. Ideler). Euclid gives no

explanation at all and does not allude

further to the phenomenon.

3 Heiberg, pp. 148—152.

Heiberg, pp. 52—55.
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bably complete Arabic text^ containing some propositions

on the division of the circle, which, Prod us says, Euclid’s book

contained but which are missing from Dee’s translation. The

work is a collection of problems on the division of plane figures

into parts which have to one another a given ratio : e. g. Dee’s

7th prop, is 'By a line drawn from an angle of a given tra-

pezium, to divide the trapezium in a given ratio’: Woepcke’s

28th is ‘ To divide into two equal parts a given figure bounded

by an arc of a circle and by two straight lines containing

a given angle.’ This, like the Data, may be regarded as a

collection of riders on the Elements^.

124. Beside these extant works, Euclid wrote others which

are lost. One of these bore the title 'irepl 'ylrevSapucov, on

Fallacies, but nothing is known of it save from a notice of

Proclus^ who, in his usual wordy manner, explains that it con-

sisted of exercises (apparently geometrical) in the detection

of fallacies. The fact that Euclid wrote such a book renders it

more than ever probable that his Elemem,ts was composed solely

for educational purposes and that Euclid is responsible for the

whole style and arrangement of the latter work. Beside the

Fallacies, we hear also of a treatise by Euclid on Hottol •7rp6<s

i7rL(j)av€La or Loci on a Surface in two books. The meaning

of this title has occasioned some controversy. Prof, de Morgan

says frankly that he does not understand it and it is evident

^ Joum. Asiatique, 1851, p. 233 sqq.

See Ofterdinger, Beitrdge zur Wieder-

herstellung etc. iiber die Theilung der

Figuren, Ulm, 1853. pp. 13

—

16, 38—38. Csiiitor, pp. 217, 248.

2 There is appended to Gregory’s

Euclid a Latin fragment of one page

only entitled Be levi et ponderoso, of

the origin of which nothing is known.

It was printed in the Basle translation

of 1537, but the publisher Herragius

says only that somebody brought it to

him during the progress of the work.

It consists of nine definitions and five

propositions. The 4th definition is

“Bodies are equal in power (potentia)

which, in the same time and in the

same medium (air or water), move the

same distance.” The 7th is “Bodies

are of the same kind which are equal

in magnitude and in power.” The

book, if complete, would evidently fur-

nish some- interesting ideas on specific

gravity, but the language, especially

the use of potentia {dvvafiLs), is not

Euclid’s or of Euclid’s time, and is

indeed hardly in the Greek style.

Heiberg, pp. 9—11.

3 p. 70 (ed. Friedlein). Heiberg, p.

38 n. suggests that there may be a

ref. to this book in the SchoL to Tkeaet.

191 B (VI. p. 248 of Hermann’s ed.)

and in Alex. Aphr. in Arist. Soph. El.

fol. 25 b (Venet. 1520).
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that Eutocius was in the same predicament, for he says, after

describing other loci well enough, that the roirot irpo^ lirK^avela

derived their name ‘from the peculiarity of them’ (aTTo rrj^ rrepl

avTov<i IScorrjTo^) and so leaves themh Prof. Chasles supposes

that the book contained propositions on surfaces of the second

degree, of revolution, and sections therein made by a plane”:

and he refers to the facts tliat Archimedes, at the end of Prop.

XII. of his Conoids and Spheroids, says that certain propositions

on sections of conoids (pavepal ivri (i.e. “are clear,” not “are

well known” as Chasles takes it) and that the four lemmas

which Pappus gives on this book of Euclid^ relate to conic

sections. Heiberg, however, by a very elaborate analysis of all

the passages in which tottoi of various kinds are described^

comes to the conclusion that tottoi 7rpo9 iirLt^avela means

simply “Zoc^ which are surfaces,^* and that Euclid’s treatise dealt

chiefly with the curved surfaces of the cylinder and the cone.

That such surfaces were regarded as loci before Euclid’s time is

evident from Archytas’ solution of the duplication problem

cited above p. 182^

Pappus® attributes to Euclid also a treatise on Conic

Sections {KtaviKo) in four books, which formed the foundation of

the first four books of Apollonius’ work on the same subject.

The former will more properly be considered when we come to

speak of the latter, but it may be mentioned here that the

names ellipse, parabola and hyperbola or the mode of producing

the conic sections which these names imply cannot have been

Euclid’s, for not only are they expressly attributed to Apollonius,

but Euclid, in the preface to the Phaenomena^, uses the old

1 Prof, de Morgan in Smith’s Die.

Entocins in Apollon. Conic. Halley’s

ed. pp. 10—12.

2 Pappus, VII. prop. 235 sqq., (Hultsch,

pp. 1004 sqq.). Chasles, Apergu, Note,

II. pp. 273, 274. Montucla (i. p. 172)

says that tSttoi -jrpbs eincfiavelq, were

surfaces, and subsequently (p. 216)

that they were lines of double curva-

ture described on curved surfaces, such

as a helix on a cylinder.

3

pp. 79—83.
^ Heiberg refers also to Pappus, pp.

253. 23, 260. 13, 262. 14.

5 vn. p. 672 (Hultsch).

® Gregory’s ed. p. 561. Here Euclid

says that “any cone or cylinder, cut

by a plane which is not parallel to its

base, exhibits that section of an acute-

angled cone, which is like a shield”

{dvpeos).
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expression ‘section of an acute-angled cone’ for the ellipse.

The work of Euclid, therefore, must have been recast by

Apollonius.

Lastly, a treatise on Porisms (jropLo-fiaTa) in three books

is attributed to Euclid by Pappus^ and this has for more

than two centuries provoked a lively controversy^, partly

because the definitions of ‘ Porisms ’ given by Pappus are very

obscure and partly also because Pappus treats so largely of

Euclid’s book and gives so many lemmas to it that it has

seemed possible, to many modern geometers, to restore the

entire work. Of these the most recent, as well as the most

successful, is the late Professor M. Chasles. The reconstruction

of the book depends entirely upon a long passage of Pappus and

a short one of Proclus, the effect of which is as follows. Proclus^

says that TropLo'/na is used, in geometry, in two senses, viz. a

‘corollary,’ for which it is the ordinary word, and also as the

name of a proposition which is neither a theorem nor a problem,

but partakes of the nature of both. Its aim is not, like a

theorem, to describe a new characteristic nor, like a problem,

to effect a construction or alter a given construction, but to

find and bring to view (utt
* 6^|rtl• djayetv) a thing which

necessarily coexists with given numbers or a given construction,

as, to find the centre of a given circle or to find the G. c. M. of

two given numbe^s^ With this definition agrees also the

ordinary use of the words iropi^eadai (which means ‘to find’

but not ‘ to construct,’ e.g. in Heron to find the length of a line)

and TToptpLov (which is synonymous with BeSopuivov, and means

‘discoverable’)®. But the aim of the porism is not quite the

same as that of a proposition in the Data. The latter is to

the former as a theorem to a problem. A datum alleges, for

1 VII. p. 648 (Hultsch).

2 A very fuU bibliography is given

by Heiberg, pp. -56, 57. It is necessary

only to mention Fermat, 1655. Sim-

son (posthumously published) 1776.

Chasles, Les trois livres de Porismes,

Paris, 1860. This also contains a

bibliography pp. 8 and 9. See also

Chasles, Apergu, pp. 12—14, and Note

m. pp. 274 sqq,

3 pp. 301—2 of Friedlein’s ed. ; cf.

p. 212.

4 The props, of the Elements in.

25, VI. 11, 12, 13, are ‘porisms’ in this

sense. These ought to conclude with

OTrep ^Set evpeiv, quod erat inveniendum.

® See Heiberg, pp. 59, 60 and the

note from Marinus supra, p, 209 n.
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instance, that with a segment of a circle the angle in it is

given, a corresponding porism is to find the ratio of the angle

to a right angle. Bnt though porisms occur in the Elements,

they were used chiefly in higher geometry and Pappus says that

Euclid’s Porismata formed part of the collection Totto? avaXvo-

/ievo9,
like the Data. He proceeds then^ to discuss the nature

of porisms, which he first defines, like Proclus, as intermediate

between a problem and theorem, subsequently as “a proposition

for the purpose of finding the thing proposed,” afterwards again

(but this, he asserts, is only a partial definition) as “that which

is inferior by hypothesis to a local theorem” (to \el7r0v iiroBkcrei

TOTTLKov Beayp^iiarosY of which ol tgttol are the commonest

examples. He then describes with some fulness two types of

porisms contained in Euclid’s book, but gives 28 more types

with horrible brevity, e. g. in the first book, ‘ This line is given

in position,’ in the third book, ‘ The sum of these two straight

lines has a given ratio to a straight line drawn from this point

to a given pointV No figures are appended. The whole work

contained, in three books, I7l propositions, to which Pappus sup-

plies 38 lemmas. Upon these statements of Pappus, which Halley

and Prof, de Morgan found unintelligible, Simson framed a defini-

tion of a porism as “ a proposition in which it is to be proved

that one or several things is or are given which (like any one of

an infinite number of things not given but having the same rela-

tion to the things which are given) has or have a certain property,

described in the proposition Chasles, who approves of this

^ VII. p. 648. 18 sqq.

* The translation in the text is from

Chasles. It seems, on authority, to be

right. Heiberg explains it as “a local

theorem with incomplete hypothesis.”

Whatever itmay mean, it clearlyis only

intended to describe a special class of

porisms, used by writers later than

Euclid who, without attempting to Jind

the thing proposed, merely declared

that it was possible to do so (e.g.

Archimedes, Be Spir. propp. 5—9,

cited by Heiberg, pp. 68, 69). Pappus

then adds that ol tottoi belonged to

this class of porisms but, owing to

their number, were collected in a sepa-

rate work {Kexf^pi<T}jAvQv rQv ‘sropiapa.-

TliJV TjdpoiaTcu),

* See Nos. v. and xx. The whole

list is given in Hultsch, pp. 6d4 sqq.

Heiberg, pp. 73—77. The Greek of xx,

is ori \6yos avva/j.<poTipov irpos rofa airb

Tovde lus bodbfTos. Halley, Simson and
Heiberg interpret this dark saying as

above: Chasles and Hultsch tr^slate

“the sum of these two rectangles has a

given ratio to the segment lying between

this point and a given point.”

^ Be Porismatibus, p. 347, quoted by

Chasles, Le Livre de PorisTnes, p. 27.





EUCLID, ARCHIMEDES AND APOLLONIUS. 219

definition, then proceeds to show the similarity between porisms

and the propositions called tottol, for a totto? " is a proposition

in which it is declared that certain points subject to the same

known law are on a line of which the nature is enunciated

and of which it remains to find the magnitude and the position.

Example : two points being given, as also a ratio, the locus of a

point, the distances of which from the two given points are in

the given ratio, is the circumference of a circle given both in

magnitude and in position'.” Hence, also, a connexion exists

between the two meauings of ‘ porisma,’ for every porism may
be put as the corollary of a local theorem^ and the close

connexion between the porism and the datum is equally

obvious ^ Further, Chasles suggests a new definition of porism,

which shall combine all the older definitions. Porisms, according

to him, are incomplete theorems, “ expressing certain relations

between things variable according to a common law : relations

indicated in the enunciation of the porism but requiring to be

completed by^the determination of the magnitude and the

position of certain things which are the consequence of the

hypothesis and which would be determined in the enunciation

of a theorem properly so-called.” In order to exhibit the

similarity of porisms with the most usual propositions of modem
geometry, Chasles gives the following example (among others)

:

“ If in the diameter of a circle there be taken two points which

divide it harmonically, the ratio of the distances between these

two points and any point on the circumference will be constant.”

Substitute here “ given ” for “ constant ” and this proposition is

a porism. Find the ratio and include it in the enunciation,

and you have a complete theorem.

Upon the preliminary discourse of Chasles, from which these

remarks are taken, Heiberg (pp. 56—79) has many criticisms,

supported by much learning, to offer, but his observations are

Playfair (in Trans, of R. S. of Edin- Chasles, pp. 31, 32, objects to this.

hurgh, 1792), improving on Simson, i Chasles, Rorismes, pp. 33—36.

suggested a def. of a porism as “ a pro- s pp, 35—33 ,

position affirming the possibility of =* Ibid. pp. 42, 43, The porisTos

finding such conditions as will render cited by Diophantus {supra, p. 121)

a certain problem indeterminate, or are closely similar to data.

capable of innumerable solutions.’"
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relevant mainly to the form of the enunciation of a porism and

its relations, by virtue of its enunciation and hypothesis, to the

TOTTO? and the local theorem h The passage of Pappus, on which

Chasles and Heiberg, and every other would-be restorer of

Euclid’s work must necessaril}^ rely, is so obscure and is suspected

of so many interpolations and mutilations ^ that I could not, save

at inconvenient length, give the details of the controversy, which,

after all, is of no practical importance. I have therefore preferred

to accept Chasles’s theories, which are founded on adequate learn-

ing and are followed by a restoration of Euclid’s Forisms with

which, at present, no serious fault has been found®.

One of the types of porisms which Pappus describes at any

length, is as follows: ‘Hf from two given points, two straight

lines he drawn, which cut one another on a straight line given

in position, and one of which intercepts on a straight line, given

in position, a segment extending to a given point on it, the other

will intercept on another straight line a segment which has a

given ratio.” This type was treated in one or more propositions

early in the First Book, and this statement, together with the 38

lemmas of Pappus, gave Chasles his clue. The Porisms of the

First Book, in his view, deal with propositions suggested by a

hypothesis in which we suppose two straight lines to turn about

two fixed points, to cut one another on a straight line given in

position, and to make on two other fixed' straight lines (or on

one only) two segments which have to one another a certain

constant relation. In the Second Book, the segments are, as a

rule, formed on one line only. In the Third Book, the two fixed

points are on the circumference of a circle and the two revolving

straight lines cut one another on this circumference. “Almost, if

not quite, all the relations of segments in the first two Books are

1

E.g. according to Heiberg, aporiam

proper has nothing whatever to do

with a corollary. A t6tos was, as

Simson defined it, a proposition ‘ to

find a locus,’ and therefore rStrot were

a Idnd of porisms. The propositions,

which Chasles calls ‘local problems’

and distinguishes from ‘loci’ and ‘local

theorems,’ are really identical with

‘loci’ and are porisms, etc.

2 See Hultsch’s edition. Heiberg

accepts the whole of the text.

3 Heiberg himself has very few criti-

cisms to make, even on the enuncia-

tions, which, he admits, are generally

of the true porismatic form. The one

obvious error in Chasles’ book is that

his restoredPorism xvn. (p. 119)is iden-

tical with the 8th Lemma of Pappus,

which is only ancillary to a porism.
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such as express that two variable points on two straight lines, or

on one only, form two homographic divisions.” It should be added

that Chasles has had the good fortune to produce 201 porisms, or

oO more than Euclid himself compo3ed\ The origmsil porisms

were used, as their place in the totto^ dva\v6fj,€vo<i indicates,

in the analysis, or in the synthesis, of a problem which was

solved analytically. No doubt, a porism of the form ‘it is

possible to find’ would be used in analysis, like the Data; a

porism of the form ‘ to find ’ would be used in the synthesis.

125. The immediate successors of Euclid, as heads of the

Alexandrian mathematical school, seem to have been Conon of

Samos, who added “ Berenice’s hair ” to the constellations^, and

Dositheus of Coionus. Perhaps also a certain Zausdppus and

rJicoteles of Gyrene were at Alexandria during this period. But

nothing is known of these persons, save that Conon, Dositheus

and Zeuxippus corresponded with Archimedes, who had a high

opinion of their abilities (especially of Conon’s®) and that

Apollonius acknowledges some obligation to discoveries in conic

sections by Conon and Nicotelesh

But Archimedes, the greatest mathematician of antiquity,,

lived not at Alexandria but at Syracuse. He is said by Tzetzes®

^ A summary of the more interest-

ing portion of Chasles’ book is given

in Taylor’s Ancient and Modem Conics,

pp. Ln—^LTV. Chasles himself says,

p. 14, “Si ce livre de Porismes nous

fut parvenu, il eut donne lieu depuis

longtemps a la conception et au d4-

veloppement des theories dlementaires

du rapport anhamwninue, des divisions

homographiques et de V iTWoluticm.’'

2 CatuUus Lsvi. 7, 8, translating

Callimachus. Delambre (i. p. 215)

suggests that Callimachus invented the

name of the constellation himself and

attributed it to Conon. The Berenice

in question was wife of Ptolemy HI.

(Euergetes). Ptolemy, the astronomer,

cites some observations of Conon.
3 See the prefaces to Sph. et Cyl.

and Arenarius, ed. Torelh, pp. 63, 64,

319.

^ Conica, Pref. to Bk. iv. Halley’s

ed. pp. 217, 218. A very important

astronomer, Aristarchus of Samos,

belongs to this interval. His extant

work on the Sizes and Distances of the

Sun and Moon is printed in the 3rd

Vol. of Wallis’s works. His proofs of

course are geometrical (e.g. Prop. 2 is

“If a greater sphere illuminate a less,

more than half the latter is illumina-

ted”) but add nothing to geometry.

5 Chiliad, ii. 35, 105. Proclus, p. 68,

cites Eratosthenes as witnessing that

he was a contemporary of Archimedes.

The chief authority on the life of

Archimedes is Plutarch, Vita MarceUi,

cc. 14—19. A biography, which was

used by Eutocius, was written by one

Heracleides who perhaps was the friend

whom Archimedes mentions pp. 217,

318 (Torelli).
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(an authority as late as the 12th century) to have died at the

age of 75, and, as it is well attested that he was killed in the

sack of Syracuse B. c. 212, he was probably bom about 287 B. c.

Diodorus' says that he visited Egypt and it is certain that he

was a friend of Conon and Eratosthenes, who lived in Alexan-

dria, His writings also show a most thorough acquaintance

with all the work previously done in mathematics, and it may
therefore be inferred that he was a disciple of the Alexandrian

school. He returned, however, to Syracuse and lived there on

intimate terms with King Hieron and his son Gelon, to whom
possibly he was related by bloods He made himself useful to

his patrons by his extraordinary ingenuity of mechanical

invention,—a gift by which he himself set little store®. He is

said, by various contrivances, to have inflicted much loss on the

Romans during the siege by Marcellus, but the city was

ultimately taken and Archimedes perished in the indiscriminate

slaughter. Marcellus wished to preserve his Life but he was

slain by accident^ The story is that he was contemplating a

geometrical figure drawn on the ground when a Roman soldier

entered. Archimedes bade him stand off and not spoil the

diagram, but the soldier, insulted at this behaviour, fell upon

him and killed him®. Marcellus raised in his honour a tomb
bearing the figure of a sphere inscribed in a cylinder. . Cicero

had the honour of restoring this during his quaestorship in

Sicily B.C. 75®.

^ Died. V. 37.

* Plutarch, Marcell. 14.

® Ibid. 17, iraaov oXwj rixvTjv xpdas

i^aTrro{j^v7]V dyeyvij koX ^dvavffov Tjyt}-

<Tci^evo^, “thinking that every Mnd of

art, which was connected with daily

needs, was ignoble and vulgar.”

* Cic. Verr. iv. 131, Livy xxv. 31,

Plat. Marc. 19, Pliny, Hist. Nat. vn.

125.

® This tale is told in many slightly

different forms. Plutarch loc. cit.

Valerius Maximus viii. 7, 7, Tzetzes ii.

35. 135, Zonaras ix. 5,

« Cic. Tusc. Disp. v. 64, 65. The

authorities for Archimedes’ life are col-

lected and generally quoted in Torelli’s

Preface, pp. 11 and 12, and Heiberg’s

Quaestiones Archimedeae, Copenhagen,

1879, pp, 1—9, This little monograph

deals chiefly with the text, but con-

tains much very minute information

on the arithmetic of Archimedes.

Heiberg has since edited the text

(Leipzig, 1830), but I have quoted

always from Toreili, whose edition I

happen to have. The errors and mis-

prints which Heiberg points out in

Toreili, are not such as to seriously

affect his value for the present purpose.



:.n.

' ''. J'^ ^ V •> .

: ; J :>' ,'^
,:i U' ''..t :

.
V J .-,,

,i
;

. ';] ::iv'
'

v'a'"'

':.,M 3
; : : i< j .iiifH'

V .".u „'»id

’i:i i3ii

v! '

S'

'. ifi

; ; ;«

" • "

Mi

.

'! iilfc

. coi^T

•::)«
'•



/

,

''

/
EUCLID, ARCHIMEDES AND APOLLONIUS. 223

126. The extant works of Archimedes seem to comprise

almost all his more important contributions to mathematics.

Internal evidence, derived from references in some books to

proofs contained in others and from allusions in the prefatory

letters which accompany many of the books, shows that the

works are to be arranged in the following approximately chrono-

logical order viz.

(1) Book I. of ‘ Equiponderance of Planes or Centres of

Plane Gravities* (^Hepl iirLTriScov laoppoirLwy rj Kevrpa IBapwv

iirLTreScov), in 15 props, preceded by 8 (or 9) postulates^

(2)
‘ The Quadrature of the Parabola! in 24 props, (sent to

Dositheus).

(3) Book II. of ‘ Equiponderance of Planes! etc., in 10

props.

(4)
‘ On the Sphere and the Cylinder! in two books, the

first of 50 props., preceded by 5 postulates, the second of 10

props, (both sent to Dositheus).

(5)
‘ The Measurement of the Circle* {kukXov puerpyo-L^), in

3 props.

(6) ‘On Spirals* (irepl iXUcov), in 28 props.

(7) ‘On Conoids and Spheroids! in 40 props, (sent to

Dositheus).

(8) ‘The Sand-Counter* {'^ap.pbiTy^)

,

an essay addressed to

Gelon.

(9)
‘ On Floating Bodies * {nrepl oxovgevcov or irepl rwv

i^Sari, i(j)taTapb6V(ov), in two books, the first of 9, the second of

10 props, (extant only in Latin) ^

We have also, in a Latin translation from the Arabic, a

collection of 15 Lemmas, which have certainly been tampered

1 See Torelli’s Pref. p. xiii. Heiberg,

Q. A. pp. 10—13.

2 Archimedes himself (Quadr. Parah.

props. 6 and 10) refers to this book as

ra fJL'qxo-vLKi. Proclus (p. 181) calls it

at dviaoppoTriat. Simplicius (ad Arist.

De Caelo, iv. p. 508 a.) calls it KevTpo-

PapLKd.

3 The Latin translation was made
by Tartaglia (Venice, 1543 and 1565)

from a Greek codex which has not since

been discovered. The title Trepl tG)v

oxov/xhcau is cited by Strabo i. p. 54

:

rd oxoifieva in Math. Vett. p. 151,

Pappus VIII. p. 1024. A fragment re-

cently discovered has the other title,

and Tzetzes evidently alludes to this

book by the name iirLaTaaidia [Cliil. xii.

'974). Torelli, Pref. xviii. Heiberg,

Quaest. Arch. pp. 13, 22.
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with (e.g. Archimedes is mentioned in the 4th and 14th) and

may not be authentic at allh Those works, also, which are

extant in Greek, are evidently not now in precisely the same

form as when first written. Some of the titles for instance,

especially ‘Quadrature of the Parabola' are added by later

hands, and again, most of the books are written in inferior

Greek of the Attic dialect, whereas Archimedes wrote in Doric

the dialect proper to Syracuse. Eutocius of Ascalon, a scholiast

of the 6th century, wrote commentaries still extant on the

books of the Sphere and Cylinder, Measurement of the Circle

and Equiponderants. These are valuable for the great number

of historical notices which they contain and of which very

frequent use has been made. in these pages.

Beside the extant works, Archimedes is known to have

written several others and yet more are attributed to him. He
wrote a treatise on the half-regular polyhedra, i.e. the solids,

thirteen in number, which are bounded by regular but dissimilar

polygons of two or three kinds ^ He himself refers (in the

Arenarius) to his arithmetical treatise called 'Ap'^ai, ‘First

Principles/ addressed to Zeuxippus. Pappus^ quotes his work

Hepl ^vydov, ‘on Levers.’ Theon quotes his Catoptrica^. Pappus®

quotes Carpus as an authority for the fact that Archimedes

wrote a mechanical treatise on the method of constructing a

globe or planetary [irepi o-cfeatpoiroua^). The Arabs ascribe to

him works on ‘ the heptagon in a circle,’ on ‘ circles touching

1 The translation in Borelli’s edition

(Florence, 1661) is said to have been

made by Abraham Ecchellensis from

the Arabic of Tabit ibn Korra, with

notes by Almochtas Abulhasan. Torelli

reprints this (see his Pref. p. xix), but

there was another version by J. Gravius

(Foster’s Miscellan. London, 1659).

Heiberg (p. 24) and Cantor (pp. 256,

257) are inclined to think that the book

contains some authentic propositions,

esp. the 4th and 14th, perhaps also

the 8th and 11th.

2 Torelh’s Pref. p. xv, Heiberg, Q,

Archim. ch. v., Be Dialecto Arch. pp.

69 sqq.

2 Pappus V. 19. Heron {Deff. 101)

says wrongly that Archimedes added

13 to the 5 Platonic regular solids.

Kepler resumed the study of such poly-

hedra in his Harmonice Mimdi. Cantor,

p. 264.

4 VIII. 24, p. 1068.

® Comm, in Ptol. i. 3, p. 10 (Basle

ed. ). Cf . Olympiodorus in Arist.Meteor.

II. p. 94 (ed. Ideler). Apuleius, Apol.

16. Tzetzes, Cliil. xii. 973. Heiberg,

Quaest. Arch. p. 33.

® VIII. 3, p. 1026. Cf.Proclus, p. 41,

16.
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one another/ on 'parallel lines/ on 'triangles/ on ‘the properties

of right-angled triangles/ on ‘data^’ Suidas says that Theodo-

sius wrote a commentary on the ‘Guide-book’ or i(j)6Biov of

Archimedes, perhaps a little treatise on geometrical methods.

Beside these, it is possible that Archimedes wrote yet other

books, for he on several occasions refers to propositions as

already proved, which are not so in any extant work, or reduces

a proposition to a problem which he does not solve (e.g. Sph.

et Gyl. II. 5. p. 158), or uses a theorem which is not proved at

alP.

127. It is usual to divide the works of Archimedes into

three groups, geometrical, arithmetical and mechanical, but

these distinctions are not strictly maintained by Archimedes

himself. Thus in Quadrature of the Parabola, propositions vi.

—XIV. are founded on propositions proved in the preceding first

book of Equiponderance (e.g. in props. VI. and vii. a triangle is

suspended from one arm of a lever kept in equilibrium by

another area suspended at the other end). So, also, the 8rd

proposition of Measurement of the Circle is an attempt to find

an arithmetical value for the ratio between the circumference

portion only, not the equation) adds

a diorismus, or determination of a

condition under which this can be sol-

ved (for a positive root) . If c = 2(a - c)

,

then a-c must be greater than b. In

other words, -i- = 0, is solu-

ble only if b<% Archimedes promises
o

a solution but does not give it. See

Cantor, pp. 265, 270, 271. Archime-

des is often said to have written a

Conics {KiovLKd), but it is now generally

supposed that the Conics and the

Elements, to both of which he often

refers, are the works of Euclid
;
Cantor

pp. 260, 261. Heiberg, Q. A. p. 31.

Heracleides, however, the biographer

of Archimedes, accused Apollonius of

stealing from an unpublished work by

his predecessor. (See Eutocius in

Halley’s Apollonius, p. 8.)

1 Wenrich Be Auct. Graec. Version-

ibtis, pp. 194, 196, Heiberg Q. A. pp.

29, 30. Heiberg is inclined to reject

these Arabic notices, save that on

‘circles touching one another,’ of which

he thinks, some extracts may be pre-

served in the 15 Lemmas.
2 E.g. in Be Us quce in liumido ii. 2,

he uses, without a word of reference,

a theorem that, in a segment of a

parabolic conoid, the centre of gravity

divides the axis into two parts such

that the part on the side of the vertex

is twice the other. The proposition

Sph. et Cyl. ii. 5 is to divide a sphere

into two segments whose volumes are

to one another in a given ratio. This is

soluble only (to use algebraical symbols)

if a line a can be so divided that

a- x:b::c~: i.e. if the cubic equation

x^ - ax^ + bc^ = 0, can be solved. Archi-

medes (who of course gives the pro-

G. G. M. 15
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and its diameter, and the inquiry involves the extraction of ^3.

Nevertheless, the division first suggested is exact enough for

most purposes, and may be adopted in the following brief

summary of the contents of the various books. The geometrical

are taken first.

The Quadrature of the Parabola begins with a letter to

Dositheus announcing the chief contents of the book. It

contains two solutions of the problem, the one mechanical, the

other geometrical. Both involve the use of the method of

exhaustion. Props, i.—ill. are simple propositions in Conics

without proofs: iv. v. are of the same kind, but are proved.

Then props, vii.—xvii. contain the mechanical proof that “ any

segment which is contained by a straight line and the section

of a right-angled cone is f [eirlrptrov) of a triangle which has

the same base and the same altitude as the segment.” Archi-

medes starts, as above mentioned, by suspending a triangle or

trapezium and another area on opposite sides of a lever in

equilibrium, the triangle or trapezium being suspended from

two points, the area from one. The triangle or trapezium is

then shewn to bear a certain ratio to the areak Then if BBF
be a segment of a parabola, of which BP is the base and @ the

point on the curve most distant from the base^, the segment

B@r is shewn by exhaustion to be one-third of the space of

which the triangle B@r is one-fourth. Props, xvill.—xxiv.

1 E.g. Prop. VI. ABF is a lever, of

which B is the middle point. A right-

angled triangle BAF is suspended from

B, F, the right angle being at B, the

side BF being half the length of the

lever. This is exactly balanced by an

area Z, suspended from A. Then Z is

one-third of the triangle. Eor in BF

take E, so that EF = 2EB. Then the

centre of gravity of the triangle (as pre-

viously proved in the 1st Book of Equi-

ponderance) lies in the vertical line

drawn from E, and the triangle may be

suspended from E without disturbing

the equilibrium. Suspend it from E

and the triangle is to Z inversely as the

arms of the lever, or as AB to BE, and

AB=3BE. A summary of the follow-

ing propositions is given by Cantor,

pp. 278—279.
2 In Prop. XVII. 0 is called the vertex,

Kopvcprj, of the curve. In Prop, xviii.

the first of the geometrical proof, it is

shewn that if the base BF be bisected

and B0 be drawn parallel to the axis

(called the ‘diameter’), meeting the

curve in 0, then 0 is the point from

which the greatest perpendicular can

be drawn from the curve to BF, and is

the Kopv(f)ri of the segment. The tan-

gent at 0 is parallel to BF.
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contain the geometrical proof. The triangle B@r is half the

parallelogram of the same altitude on BP, and is therefore more

than half the segment. Inscribe triangles in the segments cut

off by the lines B0, ©F. Each of these is more than half the

segment in which it is inscribed and is also one-eighth of the

triangle B®r : the two together are one-fourth of it. Take a

series of magnitudes, x,
^ ^ ,

of which x is equal

to the triang^le B0r. The sum of these is less than the

segment. Their sum, again, ylus ^^d of the least magnitude,

. ^x

3
IS Hence if the segment be exhausted by triangles in the

manner above indicated, it is found by reductio ad ahsurdum^

that the segment is frds of the first triangle BOF.

The treatise on the Sphere and the Cylinder is in two books.

Book I. begins with another letter to Dositheus, announcing its

principal contents \ Then follow some definitions (curiously called

d^LoofjLara) and assumptions (XafiSavofieva). Of the assumptions,

the 1st is “ a straight line is the shortest of all lines which have

the same extremities.” The book begins with 7 propositions,

bearing on the theory of exhaustion, e.g. VI. is “ a circle being

given and also two unequal magnitudes, it is possible to describe

about and within the circle two polygons, such that the cir-

cumscribed polygon shall have to the inscribed a less ratio than

the greater given magnitude to the less.” Props. Ylii.—xvii.

are on the surfaces of pyramids (described within and about

cones), of cylinders and of cones (e. g. Prop. xvi. “ The sur-

face of an isosceles cone is to its base as the side of the cone

to the radius of the base”). Props, xviii.—xxi. are on the

1 In this book Torelli numbers fifty

propositions. Other editors, who do

not count the first, number forty-

nine. In Prop. III. Torelli omits a

reference to Euclid by name which is

given in all the MSS. Proclus (p. 68)

says thatArchimedes mentionedEuclid,

and this is the only place in which

such mention occurs. Heiberg (p. 157)

thinks the words are genuine. They

are merely “Take A equal to BP, by

the Second of the First Book of

Euclid’s” [tCov EvKXeiSov). It is in the

preface to this book that Archimedes

states that the cubatures of the pyra-

mid and cone (Euclid xii. 7, 10) were

discovered by Eudoxus. The cubatures

of the sphere and the cylinder are

referred to that of the cone.

15—2
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volumes of cones and of portions of cones. These propositions

are then used (xxii.—xxxiv.) in an exposition of the relations

of the surfaces and volumes of those solids, described within and

about a sphere, which are produced by the revolution of polygons

described in or about a great circle. Prop. xxxv. is selected

for mention in the prefatory letter. It is that “ the surface of a

sphere is four times that of one of its great circles.” Prop, xxxvi.

is “ any sphere is four times a cone whose base is a great circle,

and whose altitude is a radius, of the sphere.” This leads to

xxxvil. The volume and the surface of a sphere are frds of

the volume and surface, respectively, of a cylinder whose base is

a great circle, and whose altitude is the diameter, of the sphere

(the bases of the cylinder being included in its surface). This

discovery was the chief pride of its author. The figure of this

proposition is that which Marcellus, following an expressed wish

of Archimedes \ inscribed on his tomb. Props, xxxviii.—XLVii.

deal with segments of a sphere and the inscribed and circum-

scribed solids produced, as before, by the revolution of polygons

described within and about a great circle. Props. XLViii.—XLIX.

prove that the surface of a segment of a sphere, whether less or

greater than a hemisphere, is equal to a circle whose radius

is the straight line drawn from the vertex of the segment

to the periphery of its basal circle. Prop. L. is on the volume

of a sector of a sphere, which is shewn to be equal to a cone

whose base is a circle equal to the surface of the segment, and

whose altitude is the radius of the sphere.

Book II. of the Sphere aud Cylinder begins with another

prefatory letter to Dositheus, in which the chief glories of

Book I. are again recounted, and which says that the Second

Book contains some problems and theorems suggested by the

First. Prop. II. is a problem To find a sphere equal to a given

cone or given cylinder.” The analysis of this problem leads to

the discovery of two mean proportionals between two straight

lines. The synthesis, which is the analysis taken backwards,

of course, requires that two mean proportionals should be found.

Archimedes does not here shew how this is to be done, but it is

® Plutarch Marcellus., 17.
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a propos of tliis passage that Eutocius introduces that historical

account of the duplication problem which has been already so

often cited \ Prop. III. is that “ a segment of a sphere is equal

to a cone whose base is that of the segment and whose altitude

is to that of the segment as the radius of the sphere + the

altitude of the remaining segment is to the altitude of the

remaining segment.” Some problems are founded on this, solved,

as usual, first by analysis, then by synthesis. Prop. ix. is that

“ if a sphere be cut by a plane which does not pass through the

centre, the greater segment is to the less in a ratio which is less

than the duplicate but more than the sesquialter of the ratio

which the surface of the greater bears to the surface of the

less ^ Lastly, Prop. x. is of spherical segments with equal

surfaces a hemisphere is the greatest

The book De Spiralibus begins with another letter to

Dositheus, which, after deploring the death of Conon, who

was studying the propositions ^ recounts the contents of the

2nd book of the Sphere and Cylinder

y

then points out the chief

results of the treatise on Spirals and concludes with a note

that Archimedes has used the ordinary lemma (Euclid x. or xii. i.)

on which the method of exhaustion is founded. The definition

of the spiral and the chief results of the book may be stated

practically in the words of Archimedes himself. “ If in a plane

a straight line, fixed at one extremity, revolve evenly till it

return to the position from which it started, and if along

the revolving line a point moves evenly from the fixed

extremity, this point will describe a spiral. I say that the

1 The solutions which Eutocius re-

cords (Torelli, pp. 135—149) are those

of Plato, Heron, Philon of Byzantium,

Apollonius, Diodes, Pappus, Sporus,

Menaechmus, Archytas, Eratosthenes,

Nicomedes, in this order.

^ It appears from the preface to De
Spiralibus (p. 218) that Archimedes

had wrongly stated this and the next

proposition, in an earlier copy which

he sent to Dositheus, for the express

purpose of deceiring the boastful ama-

teurs of geometry, “who say they have

found everything, but never produce a

proof, and sometimes claim to have

discovered the impossible.”

3 The treatise ‘ ‘ Measurement of the

Circle” is given in full in the next

section. The quadratures of the spiral

and ellipse depend upon a previous

quadrature of the circle.

^ Pappus says that Conon invented

the spiral. Archimedes, however, only

says that he had sent the enunciations-

of his propositions to Conon, who had

been trying to prove them.
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space which is included between the spiral and the straight

line after one complete revolution is one-third of a circle

described from the fixed extremity as centre, with radius

that part of the straight line over which the moving point

advances during one revolution (Prop. xxiv.). Again, if a

straight line touch the spiral at the last extremity of the

latter \ and from the fixed point there be drawn a perpendicular

to the revolving line (after a complete revolution) produced to

meet the tangent, this perpendicular straight line is equal

to the circumference of a circle described from the fixed

point as centre with the revolving line at the end of a com-

plete revolution as radius (Prop, xviir.). Again, if the revolv-

ing line and the moving point thereon make several com-

plete revolutions, the space which is included by the second

revolution of the spiral is half that included by the third, a

third of that included by the fourth, a fourth of that in

the fifth and so on. But the space included by the first

revolution is one-sixth of that which is included by the second

(Prop, xxvii.). Again, if in the spiral of one revolution two

points be taken and straight lines be drawn from them to

the fixed point and two circles be drawn from the fixed point

as centre with these straight lines as radii, and the lesser of

these straight lines be produced (to meet the larger circle), the

half-crescents included between the circles, the spiral, and the

straight lines are to one another in a given ratio. (Prop, xxvill.®).

The book begins with some lemmas on constructions (Props, i.

—

IX.) and with two propositions, which are in effect the geometri-

cal summation of the series 1.4.9 (Prop, x.) and of the

series a, 2a, M...na (Prop. XI.). Then follow the definitions

and some propositions on tangents to the spiral and lines passing

1 If A0 be the revolving line, A
be fixed point, the last extremity (to

TT^pas) of the spiral is 0.

2 The enunciation is extremely diffi-

cult to foUow without a figure. 0 is

the fixed point, A, T are points on the

spiral. From centre 0, describe circles

with radii 0A, 0r, and produce 0A to

H. The space S is to the space 11 as

0A-f|HA is to 0A-}-iHA.
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through the fixed point and cutting the curve (Props, xii.—xvii.).

The course of the remainder of the book is pretty well indicated

by the summary above given from the preface. But a word

should be added on the way in which Archimedes arrives at the

area of the spiral. The revolving line may be stopped any-

where. The space included between the curve and the line

is divided into sectors having equal angles at the fixed point.

Each of these is shewn to be less than one, and greater than the

other, of two similar sectors of circles. It follows, therefore,

that two plane figures (composed of similar sectors of circles)

can be described, one within, the other about, the spiral, such

that the difference between the two figures can be made as

small as we please, and exhaustion is thus effected

\

The treatise on Conoids and Spheroids is also sent, as was

promised in the letter which accompanied the De Spiralibus, to

Dositheus. A conoid is the solid produced by the revolution of a

parabola or a hyperbola about its axis. Spheroids are produced

by the revolution of an ellipse, and are long {'irapapaKea) or

flat {eirLifkaTea) according as the ellipse revolves about its

major or its minor axis. The first 3 propositions are certain

very complex arithmetical theorems ^ Props. IV.—vii. deal

with conics, e. g. v. and vi. are on quadrature of the ellipse

by exhaustion; vil. shews that ellipses are to one another as the

products of their axes. Props, viil.—x. shew that an infinite

number of right cones and cylinders can be constructed so as

to contain a given ellipse. Prop. xi. merely recapitulates some

well-known theorems on the ratios of cones and ‘segments of

cones and cylinders to one another. Props, xil.—XY. shew that

the plane sections of conoids and spheroids are conics; xvi.—xix.

are on planes touching these solids, xx. is on the division of

2 They are of no intrinsic value. The

first is in effect that if

s= <2+ 2a + 3a

then 2s > n^a> 2 (s - na)

.

The other two cannot be stated shortly,

even with symbols. On these and the

other arithmetical propositions of Ar-

chimedes, see Heiberg, Q.A. Chap. iv.

pp. 44 sqq. esp. pp, 50, 51, 56, 57.

^ Compare the accompanying figure

to Prop. XXI. which deals with a spiral

of one revolution only.
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a spheroid into two equal parts. XXI.

—

xxii. are preparatory

to the cubature of the solids : if a conoid or a spheroid

be cut by two parallel planes, the segment so obtained

contains one cylinder and is contained in another, and the

difference between these two cylinders may be made as small

as we please by bringing the two planes of section closer and

closer together. Then follow the propositions selected for

mention in the preface : Props, xxiii.—xxiv. prove that every

parabolic “ right-angled ” conoid is to a cone on the same base

and of the same altitude as 3:2; xxv.—XXVI. shew that seg-

ments of a parabolic conoid (cut by planes in any direction) are to

one another as the squares of their axes. Props, xxvii.—xxviii.

deal with the volume of hyperbolic (“obtuse-angled”) conoids;

and XXIX.

—

xxxiv. with the volume of sections of spheroids cut

by planes, whether passing through the centre or not.

Lastly, of the Lemmas which maybe authentic. Nos. iv. and

XIV. are to find the area of two curvilinear figures, which

Archimedes calls respectively ap^rfKo^; and craXivov. The ap-

which literally is the name of

a shoemakers knife, is bounded by

three semicircles whose centres are in

a straight line. Its area is the circle

described about the perpendicular DB,
The (TaXivov, which perhaps means a ^

sieve’, (cf. craXaf, koctkcvov)

is bounded by four semicircles, whose centres are in a straight

line, two having the same centre A. Its area is equal to a

circle described about BC SiS diameter \

No. XI. is that if in a circle two chords

cut one another at right angles, the

squares of the four segments of these

chords are together equal to the square

of the diameter. No. viii. is as follows.

In a circle of which the centre is A draw any chord AB and

produce it to P, so that BP is equal to the radius. Join PA,

1 Heiberg Q. A. p. 25, suggests that iv. 14 (pp. 208—232, ed. Hultsch) treats

these Lemmas iv. and xiv. are extracts of the ap^rjXos. See also Cantor pp.

from the work of Archimedes on “cir- 256, 257.

cles touching one- another.” Pappus

A
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cutting the circle in Z, and produce FA to meet the circle again

in E. Then the arc AE will he three times the arc BZ. The

figure which leads to the proof is appended.

128 . The reader will see, from this brief summary, how

wide a range of subjects Archimedes studied and with what

astonishing ingenuity he treated them. Nevertheless, quadrature

and cubature of curvilinear areas and solids bounded' by curved

surfaces were his chief hobbies, and the process which he most

affects is exhaustion. This he handles with consummate mastery,

and with it he obtains results for which we now look to the

infinitesimal calculus. It is desirable, however, that an authentic

specimen of Archimedes’ geometrical work should be given in full.

For this purpose, the little work on ‘'Measurement of the Circle”

is especially well adapted, both because it is short in itself, and

does not appeal to any recondite propositions the proof of which

is too long to be admitted, and because it gives all the main

characteristics of Archimedes’ style. It will be seen, at once,

that Archimedes writes not with any educational purposê like

Euclid, but for the elite of the mathematicians of his time.

does not confine himself to a stereotyped form of exposition, and

does not shrink from introducing, into a geometrical argument,

propositions of dpiO/jurjTiKy and operations of XoytariKTj.

The Measurement of the Circle is in three propositions only.

Prop. I. is "Every circle is equal to a right-angled triangle, such

that the sides containing the right angle one is equal to the

radius, the other to the circumference of the circle.” The

proof, literally translated, save for the introduction of symbols,

is as follows.

"Let the circle ABCD be related to the triangle E ac-

cording to the hypothesis. I say it is equal to the triangle E,
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For, if possible, let the circle be greater and let the square AC
be described in it, and let the circumferences be bisected, and

let the segments be finally less than the excess of the circle

over the triangle. Then the rectilineal figure is > the triangle.

Take the centre N and the perpendicular NX. Then NX
is < the side of the triangle. And the periphery of the recti-

lineal figure is < the other side, for it is < the circumference

of the circle. The rectilineal figure is therefore < the triangle,

which is absurd.

But let the circle, if possible, be less than the triangle E.

And let the square be circumscribed and let the circumferences

be bisected, and let tangents be drawn through the points of

bisection. Then the angle OAR is a right angle : therefore

OR is >MR, for MR=RA. And the triangle ROP is > JOZAM.
Let the segments similar to PZA be left less than the excess of

the triangle E over the circle. Then the circumscribed recti-

lineal figure is < E, which is absurd, for it is > E, since N

A

is

equal to one side of the triangle and the perimeter is greater

than the other. The circle therefore is equal to the triangle E.

Prop. II. is “A circle has to the square on its diameter the

ratio 11:14 very nearly.”

The proof is as follows : ‘‘Take a circle, with diameter AB,

and let the square GHD be circumscribed about it. And let

DE be double of the side CD, and EZ one seventh part of CD.

Since then the triangle ACE has to ACD the ratio 21 : 7, and

ACD has to AEZ the ratio 7:1, therefore the triangle A CZ is to
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the triangle ACD as 22 : 1. But the square GH is four times

the triangle A CD : therefore the triangle ACZ is to the square

GH as 22 : 28 or 11 : 14. And the triangle AGZ is equal to the

circle, since AG is equal to the radius and GZ to the circum-

ference (which will be shewn to be very nearly 8-f
of the

diameter). The circle therefore has to the square GH the

ratio 11:14 very nearly \

Prop. HI. is “The circumference of a circle exceeds 3 times

its diameter by a part which is less than f but more than of

the diameter.” The proof is :

“Let there be a circle with diameter AG and centre E
and tangent GLZ, and let the angle ZEG be a third of a right

angle. Then EZ : ZG :: 306 : 153 and

EG \GZ> 265 : 153^ Draw EH, bi-

secting ZEG. Then ZE : EGv.ZE : HG,
and permutando and componendo,

ZE+EG : ZG :: EG : GH. Where-
fore GE : GH> 571 : 153. Therefore

EH'^ : HG^ > 349450 : 23409 and

EH : HG < 591^ : 153^ Again, bisect

^ The word ^yyL<xTa “very nearly”

seems to have been added throughout by

Wallis. The proposition should possi-

bly be placed third, but it must be

remembered that ir= 3f was a very

common approximation in Archimedes’

time. Heron in his Geometria (ed.

Hultsch, pp. 115, 136) refers it first to

Euclid, then to Archimedes. The E-
gyptian value was 3-1604. Ptolemy

(ed. Halma vi. 7) uses 3t\V = B-141666.

^ The omitted steps are EZ—2ZC
ipn _

notknownhowArchimedes obtained this

approximation. Seeswpm, pp. 53—55.

But in fact

8 N. B. 349450 = (5712 -t- 1532)

= (326041 + 23409). This is greater

than (591^)2= 349,428||. (591|)2 is

nearer.
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the angle HEG by the line EP. On the same principle,

EG : OP > 11621 : 153 \ Therefore PE : PC > 11724 : 153^

Bisect the angle PEG by the line EK. Then

EG:GK> 2334i : 153. Therefore EK : GK > 23394 • 1^3.

Bisect the angle KEG by the line LE. Then

PO: Z(7> 46734 : 153.

The angle LEG is Jgth of a right angle. At E, make the

angle GEM = LEG and produce zG to M. The angle LEM is

-

2
*

4
th of a right angle. Therefore the line LM is the side of a

polygon of 96 sides (t/gj circumscribed about the circle.

Since it has been proved that EG : GL > 46734 : 153 and

AG = 2EG and LM= ^GL, therefore AG : LM > 46734 : 153.

Therefore AG : periphery of 77gg>46734 : 14688. Of these

numbers, the latter is three times the first + 6674? which is

4673-
< — Wherefore the periphery of is three times the

diameter + a part less than
f. Much more then is the cir-

cumference of the circle < Sf of the diameter.

Secondly, Take a circle with diameter A G, and make the

angle BA G 4rd of a right angle. Then AB : BG <1351 : 780,

but AO: OP :: 1560 : 780.

Bisect BA 0 by HA. Then since ^ BAH= z HGB and also

= ^ HAG, .*. ^ HGB= ^ HAG. And the right angle AHG is

common. Therefore the third angle HZG = th.e third ^ AOP.

Wherefore the triangles AHG, GHZ are equiangular and

^ EH : EC HP : PC and EH : CH> 591^ : 153. Therefore

.'.{EH+EC) : EC :: {HP + PG) : PC EG: PC >(571 + 591^) : 153.

and {EH+ EC)
:
{HP+ PC):: EC: PC. ^ PE^ = PC^ + CE^ > ISlSUSh

But it was shewn above that > (11721^)^. (1172f)2 is nearer.

CE : CH>571 : 153
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AH : HG :: GH : HZ :: AG : GZ, But AG : GZv, GA AB : BG.

Therefore GA + AB : BG :: AH : HG. Therefore

AH :HG< 2911 : 780 : but AG : GH < 3013ii
: 780.

Bisect the angle GAHhj AP. Then on the same principle

AP: PG < 5924|i
: 780 or < 1823 : 240, which numbers are of

the preceding, respectively. Wherefore AG : CP < 1838

:

240.

Bisect the angle PAG by KA. Then

KA :ir(7<3661/Y: 240, or (dividing by -|^)< 1007 : 66. Therefore

AC: (7W< 1009J : 66.

Lastly, bisect the angle KAG by LA. Then

:L(7< 20161 : 66: but ^(7 : (7Z < 2017i : 66.

Conversely (7Z : ^0 > 66 : 20l7i, and the periphery of the

inscribed polygon : diameter > 6336 : 2017J. Of these numbers,

the first is > of the second. Much more then is the cir-

cumference of the circle > 3|f of the diameter.

129. The arithmetical treatise of Archimedes {Arenarius,

and also the cattle-problem have been summarised

above (pp. 57—61 and 99). It remains only to notice his works

on mechanics. For these he had few^er predecessors. Of the

simple machines two at least, the lever and wedge, were known
from a remote antiquity. Archytas is said to have invented the

screw and the pulley {rpo^tXala)^. Some kind of a

compound pulley seems to be described in Aristotle’s Mechanica

Prohlemata (c. 18). The same work shews that, in the century

before Archimedes, the mathematical theory of the lever was

under consideration, and that it was known that the power and

the weight if applied perpendicularly to a straight lever, so as to

produce equilibrium, are to one another inversely as the arms of

1 He invented also a child’s rattle, children “from breaking things about

which Aristotle recommends {Pol. viii. the house.”

5, 2) as a useful instrument to prevent
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the leverh Some notion of the parallelogram of forces^ and of

the principle of virtual velocity also appears. Many intelli-

gent questions in mechanics, moreover, are here asked, and

Aristotle illustrates such explanations as he can give by geo-

metrical figures I The author of the fragment De levi et

ponderoso (attributed to Euclid), if he lived before Archimedes,

had some idea of specific gravity. Also somebody before

Archimedes had invented the term “centre of gravity” {Kcvrpov

(3apov<;) which Archimedes uses but does not defined But

there was not as yet any mathematical proof of any proposition

in mechanics. This step is taken by Archimedes, who deals

however only with statics. Book i. of the Equiponderance of

Planes begins abruptly with some postulates^ of which the

second is “that equal weights suspended from unequal arms

(longitudes, /xa/cea) are not in equilibrium (/x?) laoppoirelv) but

incline (sxc) towards the weight which is suspended from the longer

arm.” A little further on, he assumes “that if equal and

similar planes fit exactly upon one another, their centres of

gravity also fit exactly upon one another” (i^appo^eiv iir

1 Aristotle says that cheating trades-

men would shift the centre of their

balances towards the scale in which

the weight lay {Mech. Probl. i. fin.).

This practice, no doubt, led to the

discovery of the law. Aristotle dis-

tinguishes the balance {^vyov) from

the lever {nox^os), and the a-irdpTov

(rope) by which the former is suspended

from the virofjt.6x^<-ov (fulcrum) on which

the latter is supported. He gives,

however, the same explanation of both.

See Mech. Prohl. i. and xxiii.
,
and

Heller, Geschichte der Physik, pp. 63

—

66. Heller admits that “it would be

foolish to attribute to Aristotle a clear

knowledge” of the principle in question.

All that Aristotle says is as follows. If

a point A have two “motions” {(popal)

at the same time, the one along the

straight line AB and the other along

the straight line AC, and AB, AC re-

present in length the ratio of ihe mo-

tions, then the resulting motion is along

the diagonal AD of the parallelogram

ABDG. He shews this by supposingA to

move along AB, while the whole lineAH
moves towards CD . There is agood note

in VanCappelle’sEd. (1812) pp. 150 sqq.

3 Cantor, p. 219 and supra, pp. 105w.

189.

^ Eutocius defines it at the beginning

of his commentary (Torelli, p. 2). The

Kivrpov poirijs or pdpovs of a plane figure

is “the point from which it must be

suspended, in order to remain parallel

with the horizon.” “The centre of

gravity of two or more plane figures is

the point from which the balance (6

^vyos) must be suspended, in order to

remain parallel with the horizon.”

Possibly Archimedes had given this

definition in his lost treatise irepi ^vyup.

® According to Eutocius, Geminus,

who was a great purist in nomenclature,

proposed to call these “axioms.”
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dXXaXa). “Of unequal but similar figures, the centres of

gravity are similarly placed.” “In similar figures points are

similarly placed if the straight lines, making equal angles at

such points, make also equal angles on the homologous sides.”

Lastly, “In any figure, of which the periphery is concave

towards the same parts \ the centre of gravity must fall within

the figure.” Props. I.—iii. are of exactly the same kind as the

initial postulates. Props IV.—V. shew how to find the centre

of gravity of two or three equal magnitudes whose centres of

gravity are in the same straight line. Props, vi. and vii. are

“commensurable and incommensurable magnitudes hang in

equilibrium from arms which are inversely as the magnitudes.”

Prop. VIII. is to find the centre of gravity of the remaining

part of a magnitude, from which a portion not having the

same centre of gravity as the whole, has been removed. Props.

IX.—XV. shew how to find first the line in which the centre

of gravity lies, and then the centre of gravity itself of a

parallelogram, a triangle and a trapezium. Between Books I.

and II. the Quadrature of the Parabola is interposed. Book

l[. begins (Prop. I.) by applying to parabolic segments the

Props. VI.—VII. of the first book. Props li.—vii. deal with the

centres of gravity of rectilineal figures inscribed in a parabolic

segment, e.g. Prop. v. is “If a rectilineal figure be inscribed in a

parabolic segment, the centre of gravity of the whole segment is

nearer to the vertex than that of the inscribed figure.” Prop.

VIII. is “The centre of gravity of a parabolic segment divides

the diameter so that the part towards the vertex is f of the part

towards the base.” Prop. ix. is a very complicated proposition

1 This expression is not here ex-

plained. Be Sph. et Cyl. Ax. 2 is “A
line is concave {koLXt}) towards the

same parts in which, if any two points

be taken, the straight lines joining

such points either all fall on the same
side {iwi ra aiira irlirTovai) of the line

or some on the same side and some on
the line itself UaT avrijs) but none on
the other side” {eirl ra hepa).

2 The enunciation is to this effect:

If four straight lines (a, h, c, d, of

which a is the greatest) be in continued

proportion, and d : a- d :: e : % {a-c)

2a + 4b + Qc + Sd fand then
5a + 105 -+ 10c + od a — c

e+f—^a. This is worked out in a

series of proportions obtained permu-

tando, componendo, dividendo. The
proof in modern symbols is given in

Heiberg, Q.A. pp. 49, 50.
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in arithmetic which is required for Prop. x. to find the centre

of gravity of a truncated parabolic segment.

It is evident that, in the composition of this work, Archi-

medes’ interest was not with mechanics but with mathematics.

He does not care about weights or balances but about proofs.

Some more practical propositions, perhaps, were contained in

the lost book irepl ^vyoov, from which Pappus^ seems to quote

the problem “To move a given weight with a given power.”

The two books on Hydrostatics, De Us quae in humido

vehuntur, are similar in character to the Equiponderance, but in

this department of mechanics Archimedes seems to have had no

predecessors whatever. His attention seems to have been first

called to the subject of specific gravity by the following circum-

stance. King Hiero, being anxious to discover whether a crown,

which was ostensibly made of gold, might not perhaps be

alloyed with silver, asked Archimedes to test it. The story

relates that the philosopher was in the bath when the proper

method of inquiry occurred to him, and that he immediately ran

home naked, shouting WvprjKa, evprjKa, “ I have found it.” Our

authorities, however, which agree thus far, now begin to diverge.

One^ says that Archimedes, having observed, on stepping into

the bath, that bodies immersed in water displaced a quantity of

water proportionate to their bulk and not to their weight,

measured the quantity displaced by gold and silver masses of

equal weight and thus obtained a ratio of bulk between the two

metals. A later wHter® on the other hand, states that Archi-

medes, by weighing two equal weights of gold and silver immersed

in water, discovered not the quantity but the weight of the water

displaced, and thus arrived at the specific gravity of the metals.

Both methods may be authentic, but the latter leads more natu-

rally to the treatise on Floating Bodies. Book 1.*^ begins with

1 VIII. 19. p. 1060. are printed in Torelli, p. 364.

2 Vitruvius, ix. 3. ^ The definition of a fluid is given in

3 The author of a poem De pon- Positio i. ‘‘Let it be assumed that

deribus et mensuris^ formerly attributed the nature of a fluid is such that, all

to Priscian hut now supposed to be its parts lying evenly and continuous

of about A.D. 500 (Hultsch, Scripts with one another, the part subject to

Metrologici p. 88 sqq.). The passage less pressure is expelled by the part

of Vitruvius and the lines of the poem subject to greater pressure. But each
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two propositions to the effect that the surface of every still fluid

is spherical, the centre of the sphere being the centre of the earth.

Prop. III. is that bodies of equal weight with an equal bulk of

any fluid do not, if immersed in the fluid, rise above or sink below

its surface. Props, iv.—vi. are on bodies lighter than a fluid.

Prop. V. in particular contains the hydrostatic principle that

“ a body lighter than a fluid, when immersed therein, sinks so

deep that the quantity of fluid displaced weighs as much as the

whole body.” Prop. vii. is on bodies heavier than a fluid and

immersed therein. Props. Vlil.—IX. are on segments of a sphere

lighter than a fluid and immersed therein. These wdll float

so that their axes are always vertical. Book il. begins with

a proposition (l.), which gives a scientific definition of the

specific gravity of bodies lighter than the fluid in which the

unit of gravity is chosen. It is that “ if a body, lighter than a

fluid, floats therein, its weight is to that of an equal bulk of the

fluid as the immersed part is to the whole.” The remaining

propositions ii.

—

X. are on segments of parabolic conoids im-

mersed in a fluid and the positions which they will assume

under various conditions \

Although, in these works, it is evident that mathematical

interest far exceeds the mechanical, and though Archimedes, as

above mentioned, was of the opinion of Plato and Pythagoras

that the employment of the intellect in the useful arts was

degrading, yet it is certain that many of the most useful

mechanical contrivances of antiquity were due to his ingenuity.

Of these the most famous is the water-screw which

part is pressed perpendicularly by the

fluid above it, if the fluid be falling

(deseendens in aliquo) or under any
pressure.” Positio ii. occurs after

Prop. VII. and is “Let it be assumed

that a body which is borne upwards by
a fluid, is so borne in the direction of

the perpendicular line which passes

through its centre of gravity.”

^ Two propositions of the De Spiral.

(i. and II.) are of mechanical import-

ance, though no mechanical use is

there made of them. i. is “If in any

line a point moves evenly and there be

taken in the line two parts, these shall

have to one another the ratio of the

times in which the point traverses them

respectively.” ii. is “If two points

move evenly each in its own line and

in each line there be taken two parts,

of which the two first are traversed by

the points in the same time and also

the two second, the parts will be pro-

portional.”

G. G. M. 16
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is stili used. This apparently was invented by Archimedes

when in Egypt for the purpose of irrigating fields, but it was

used also for pumping water out of mines or from the hold of a

ship\ Further the problem “how to move a given weight with

a given power,” above mentioned, was practically solved by

Archimedes^ by the construction of a machine which is variously

described; It is said by Athenseus (and Plutarch has a similar

tale), that Hiero was in a difficulty about the launching of a

certain very large ship. Archimedes effected this very easily

by means of an apparatus of cogwheels, worked by an endless

screw {e\L^y. Plutarch, however, states that he used, for the

purpose, a compound pulley (7ro\va7ra(TTo<;). It is possible

that Athenasus has by some confusion attributed to Archimedes

the ^apovXKo<; which was invented by Heron^ but many autho-

rities concur in attributing to him a compound pulley of three

{rpLairaaTo^;) or more (7roXucr7racrT09) wheels®. Perhaps this

machine was called by Archimedes himself a 'x^apiarlcov, for

Tzetzes who, in one place {Chil. ii. 130), records the proud boast

of the philosopher “ Give me a place to stand on (So? ttov o-tw)

and I will move the whole earth with a yapLo-TLcovy elsewhere

(hi. 61) repeats the same saying as referring to a TpLcriraaTo^

(or iroXvaTraaTo^y. It is well attested, again, that Archimedes

protracted the siege of Syracuse for a long time by his ingenuity

in constructing catapults which were equally serviceable for

long or short ranges, and others which could be applied to a

small loophole in a walP, but the tale that he set fire to the

1 See the article ‘Archimedean Screw’

with an illustration in Encycl. Brit.

The ancient authorities are Diodorus,

I. 34, V. 37, Vitruvius x. 6 (11), Philo

III. p. 330 (ed. Pfeiffer), Strabo xvii. p.

807, Athenseus v. 208 f.

2 Plutarch, Marcellus 14, Athenaeus

V. 207 a, b.

3 Eustathius ad Iliad iii. p. 114,

ed. Stallbaum.

^ Pappus III. prop. 5. (Hultsch, p.

63) and viii. props. 31 sqq. So also

TertuUian {De Anima, 14) ascribes to

Archimedes the hydraulic organ which

everybody else attributes to Ctesibius,

the teacher of Heron.

® Beside Plutarch, Galen in Hippocr.

De Artie, ir. 27 (xviii. p. 747, ed. Kiihn),

Oribasius, Coll. Med. xlix. 22 (iv. p.

407, ed. Bussemaker). The latter writer

loc. cit. and Vitruvius x. 2, describe

the rplaTraaros. Proclus (p. 63) only

gives the fact that Archimedes moved
a large ship.

® All the authorities are collected in

Heiberg Q.A., pp. 36—38.

^ Polybius VIII. 7, Livy xxiv. 34,

Plutarch, Marcellus 15. More reft, in

Heiberg, op. cit. pp. 38, 39.
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Roman ships, by means of burning-glasses or concave mirrors

^

though repeated by many late writers, is not found in any

authority older than Lucian (Hipp. 2).

It is evident, again, both from the Arenarius itself and from

many references in later authors, that Archimedes was much

engaged in astronomical observations^ Hipparchus [loc. cit)

says “ from these observations it is clear that the differences of

the years are very small, but, as to the solstices, I almost think

(ov/c aVeXTr/fft)) that both myself and Archimedes have erred,

by a quarter of a day, both in the observation and in the

calculation.” It would seem from this, and Ammianus expressly

states, that Archimedes was interested in the great question of

the length of the year. Macrobius says that he discovered the

distances of the planets. However this may be, it is certain

that Archimedes not only wrote a treatise (mentioned above)

on the constitution of a celestial globe (irepl a<f>aipoiroita^) but

himself actually made one and also a planetary, exhibiting the

movements of the sun, moon and five planets. Both these were

brought to Rome by Marcellus and were inspected by Cicero

himself ^

It is not difficult to understand how, in ancient times,

Archimedes came to be considered as the prince of mathe-

maticians, and that ^‘^an Archimedean problem ” became a name
for a difficulty insoluble to the ordinary intellect and an “ Archi-

1 The same story is told of Proclus

by Zonaras (Montucla i. p. 334).

Montucla, who has some rather a-

musing pages (i. 232—235) on this

subject, shews the improbability of the

tale about Archimedes. It appears

that le pere Kircher and also Buffon

made some successful experiments with

a great number of mirrors. Buffon,

with 400 small mirrors, melted lead at

a distance of 140 feet.

2 Hipparchus in Ptol. Almagest, i.

p. 153. Ammianus Marcell. xxvi. 1, 8,

Macrobius, Somn. Scip. ii. 3. Livy, loc.

cit. calls Archimedes ‘unicus spectator

caeli siderumque.^
^ Cicero, De Bep. i. 21—22, Tusc.

I. 63, Nat. D. II. 88, Ovid, Fasti, vi.

277, etc. Most of the passages con-

taining references to the mechanical

contrivances of Archimedes are printed

in Torelli’s Appendix, pp. 363—370.

Some further references are added by

Heiberg, Q.A. cap. 3, pp. 35—44. The

loculus Archimedius, mentioned by late

Roman writers (Marius Victorin. Art.

gr. 3, Atilius Fortun. Be Metr. vi. p.

271), was a square of ivory cut into 14

pieces of various shapes. It was a

common game to put these together

again into the original square. There

is no reason to suppose that Archimedes

invented this toy.

16--2
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medean proof” was the type of incontrovertible certainty

h

The older men of the modern school, from Tartaglia to Leibnitz,

while geometry and mechanics were still largely dependent for

support on the discoveries and demonstrations of the Greeks,

were as enthusiastic as the ancients about Archimedes. Even
later writers, such as Gauss and De Morgan and Cliasles^ who
were familiar with the highest modern methods, do not hesitate

to rank him with Newton in the very forefront of the champions

of science. But knowledge has lately advanced too fast for the

fame of Archimedes to keep up with it, and, though his name is

no doubt immortal, few readers now know upon what services

his immortality depends. Possibly these few paragraphs will

justify it at least to mathematicians who understand what diffi-

culties the work of Archimedes involved.

130 . The chiefcontemporary of Archimedes was the famous

Eratosthenes. As he was eleven years younger than the mathe-

matician of Syracuse, he was probably born B.c. 276 or 275.

He was a son of Eglaus, a native of Gyrene, but lived almost all

his life in Alexandria. He was a pupil of Callimachus, the

poet, and after a visit to Athens, was invited to succeed his

master as custodian of the Alexandrian library. He is said to

have almost lost his sight by ophthalmia and, on that account

to have committed suicide, by voluntary starvation, about

B.C. 194.

The multifarious activity of Eratosthenes may be guessed

from the fact that, among other contributions to literature and

science, he wrote works on Good and Evil, Comedy, Geography,

Chronology, the Measurement of the Earth and the Constella-

tions^, He was also a considerable poet. The students of the

1 Cic. ad Att. xii. 4, xii. 28, Pro

Cluentio 32, Ac. Priora 36.

2 Chasles, Apergu, p. 15, says of the

discoveries of Archimedes that they

are “for ever memorable for their

novelty and the difficulty which they

presented at that time, and because they

are the germ of a great part of those

which have since been made, chiefly in

all branches of geometry which have

for their object the measurement of the

dimensions of lines and curved surfaces

and which require the consideration of

the inflnite.”

3

See the article Eratosthenes in

Smith’s Die. of Gr. and Rom. Biogr.

for the authorities who mention these

and other works, none of which are

extant.
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University used to call him Pentathlus, the champion in five

sports \ It was Eratosthenes who first made a fairly accurate

measurement of the obliquity of the ecliptic and an approxi-

mate measurement of a geographical degreed It was certainly

in his time also that the calendar^, which we now call Julian,

with an intercalary day every four years, was introduced. His

arithmetical device for finding prime numbers has been described

above (p. 87), but of the geometrical work of Eratosthenes only

one fragment now remains, the letter which he addressed to

Ptolemy Euergetes on the duplication-problem and which is

preserved in the commentary of Eutocius on Archimedes, Sph.

et Cyl. II. 5. This is mainly occupied with the description of a

mechanical contrivance for effecting duplication, which Eratos-

thenes hence called a mesolahium or “mean-finder,” and of

which he was so proud that he dedicated a specimen of it in a

temple to be a possession for ever to posterity. It consists of

three oblong frames, with their diagonals, sliding in three

grooves so that the second frame can slide under the first, the

third under the second.

A
\ d

\ \ E

B i> b:

If AB, GH be the two lines between which it is required

to find two mean proportionals, then slide the second frame

under the first and the third under the second so that A G shall

pass through the points G, E, at which the diameters of the

1

They also called him Beta, as a

little later they called a certain as-

tronomer Apollonius Epsilon. I should

think these were simply the numbers

of certain lecture-rooms, but Ptolemy

Hephaestio (in Photius, Cod. cxc.) says

that Apollonius was called Epsilon be-

cause he studied the moon, of which

the letter 6 was a symbol. This

Apollonius maybe Apollonius of Peyga,

who certainly studied the stations and

retrogradations of the planets (Ptol.

Almag. xii. 1).

2 On the astronomical and geode-

tical work of Eratosthenes see Delam-

bre I. ch. vii. pp. 86—97.

3 See the edict of Canopus, de-

scribed by Lepsius in his Zeitschrift

1877. Heft I. Cantor, p. 283.
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second and third frames, respectively, cease to be visible. Then

CD, EF SiXQ the required two mean proportionals h

131 . Contemporary with Eratosthenes and Archimedes,

though younger than either, was Apollonius of Perga (in Pam-
phylia). He was born in the reign of Ptolemy III. (Euergetes

247—222 B.C.), and flourished under Ptolemy IV. (Philopator

222—205 B.C.). He came when quite young to Alexandria and

studied under the successors of Euclid, though no special

preceptor is named. He stayed for some time at Pergamum,

where there was an university and library similar to the

Alexandrian, and where he made the acquaintance of that

Eudemus to whom the first three books of his magnum opus,

the Conic Sections, are dedicated. The brilliance of this work

gained for him the title of ‘ the great geometer,’ but no more

than these meagre facts'"^ is known of his history.

Of the eight books which the treatise on Conic Sections

originally contained, we possess only seven, and these again have

come to us in two parts from two distinct sources. Sir Henry

Savile had a Greek MS. of the first four books, but though the

whole work seems to have remained for many centuries a

text-book of the Greek schools®, the last four books seem to

have been ultimately abandoned as hopeless and the Greek

text of them has wholly disappeared. The 8th was lost as

early as the time of Tabit ibn Korra vEo (in the 9 th century)

translated the first seven books into Arabic. This translation

remained the standard Arabic text of Apollonius ^ The Persians,

1 Pappus VII. Proem, pp. 636, 662

(Hultsch) mentions a work of Era-

tosthenes Trepl fjLeaoT'qTOiv or tottol irpos

fxeaoTTjTas, which perhaps dealt with

the duplication-problem or with conics.

Montucla i. p. 280.

2 These are obtained from the pre-

fatory letter to Book i. of the Conics,

and from Eutocius’ Commentary there-

on, Halley’s ed. pp. 8 and 9.

3 Geminus, Serenus, Pappus, Hy-

patia and Eutocius all wrote commen-

taries on Apollonius.

^ There is some difficulty about the

Arabic translations of Apollonius. Han-

kel (p. 234), quoting Casiri, says that a

version was made, in the time of A1

Mamun, of the first four Books : that this

was edited by Muhammed, one of the

Beni Moses {i.e. the three sons of Musa
ibn Schakir), and that Tabit added a

translation of the 5th, 6th, and 7th

Books. But the writer of the Golian

MS. (see Halley, p. 255) says that he

has followed the version of Tabit, as

emended by the Beni Moses. The Per-

sians Abulphath and Abdulmelik, next

mentioned, are not otherwise known.
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Abulphath and Abdulmelik made an epitome of it, and the

famous Nasir-Eddin edited the whole with a commentary about

A. D. 1240. But, in Europe, only the first four books were

known as late as the middle of the I7th century, when one

Golius, a professor at Leyden, introduced an Arabic MS. written

in 1248, containing the first four books in Nasir-Eddin’s edition,

but the last three from the translation of Tabit with emendations

by the Beni Mosesh This MS. was bought by Dr Marsh, arch-

bishop of Armagh, who lent it to Halley, the astronomer, who

was then Savilian professor of geometry at Oxford. In 1710

Halley published the Greek text of four books and a Latin

translation of the remaining three, together with the lemmas of

Pappus to each book, the commentary of Eutocius and a

conjectural restoration (by Halley himself) of the lost 8th book.

The contents of the eight books of Conics are stated in

a very brief summary by Apollonius himself in the prefatory

letter to Book i. The more interesting and material parts of

this are as follows: “Apollonius to Eudemus, greeting. When I

was in Pergamum with you, I noticed that you were eager

to become acquainted with my Conics

;

so I send you now the

first book with corrections and will forward the rest when I have

leisure. I suppose you have not forgotten that I told you that

I undertook these investigations at the request of Naucrates the

geometer, when he came to Alexandria and stayed with me : and

that, having arranged them in eight books, I let him have

them at once, not correcting them very carefully (for he was on

the point of sailing) but setting down everything that occurred

to me, with the intention of returning to them later. Wherefore

I now take the opportunity of publishing the needful emen-

dations. But since it has happened that other people have

obtained the first and second books of my collections before

^ In 1656, almost simultaneously

with the arrival of Golius’ MS., an-

other was found in the Medicean library

at Florence. Galileo’s pupil, Viviani,

had then nearly completed his restora-

tion of the four last books, all of which

were supposed to be lost. It was found,

on comparison, that he had omitted

much that was in Apollonius but had

improved on the real text in many re-

spects. The restoration of lost works

of Apollonius founded on the lemmas

of Pappus and other authorities, was

a favourite exercise of mathematicians

from the 16th century onwards. See

infra, pp. 261—263.
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correction, do not wonder if yon meet with copies which are

different from this. Of the eight books, the first four are

devoted to an elementary introduction. The 1st contains the

mode of producing the three sections and the conjugate hyper-

bolas {avTLKelfjLevaL, ^opposite’) and their principal character-

istics, more fully and generally worked out than in the writings

of other authors. The 2nd Book treats of diameters and axes

and asymptotes and other things of general and necessary use in

diorismi: What I mean by diameters and axes you will learn

from this book. The 3rd Book contains many curious theorems,

most of which are pretty and new (Ka\d /cal ^iva), useful

for the synthesis of solid loci and for diorismi. In the in-

vention of these, I observed that Euclid had not treated syn-

thetically the locus i'lrl Tpet<^ /cal T€(T(Tapa<; ypapupud^ (The locus

which is related to three or four lines’)^ but only a certain

small portion of it, and that not happily, nor indeed was a

complete treatise possible at all without my discoveries. The

4th Book shews in how many points the sections of a cone can

coincide with one another or with the circumference of a circle
^

and some extra propositions (dWa i/c irepLcraov), none of which

had been published by my predecessors. The rest (the last

1 The roTTos i-iri rpeis Kal ricraapas

-ypapip-ds would have been treated ana-

lytically in Euclid’s lost Conics. Pap-

pus VII. 36, p. 678 (Hultsch), defines

this locus as follows : “If three straight

lines be given in position and from

a point straight lines be drawn to

meet the given three at given angles,

and the ratio of the rectangle under

two of the lines so drawn to the square

of the third be given, the point will lie

on a solid locus given in position, i.e.

on one of the three conics. If four

straight lines be given in position and

four straight lines be drawn as before,

and the ratio of the rectangles under

two pairs be given, similarly the point

will lie on a conic.” If five or six

straight lines were drawn, whose pro-

ducts were in a given ratio, the locus

of the point could not be described.

The conic as a locus ad quattuor lineas

is used by Newton in the Frincipia.

Chasles Apergu p. 38 points out the

importance of this aspect of conics.

2 This sentence is only a paraphrase.

The Greek has iroaaxdos (“in how many
ways”) and kutcl Troad arjp.e'ta (“in

how many points”) in two distinct

sentences, as if these were two different

things. But the introduction to the

4th book has only Kurd iroad arj/xetat

and it is probable that these words

were added as a gloss on wocrax^s by

some commentator. The same intro-

duction to the 4th Book says also that

the subject here assigned to it had

been treated already, but very badly, by

Conon, whose work was severely criti-

cised by Nicoteles of Gyrene, and that

some props, of the 4th Book had been

cursorily treated by this Nicoteles.
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four books) is more advanced (irepiovcrLacrTLfcwTepcL). One is, for

the most part, on maxima and minima

:

the next about equal

and similar conics: the next about ‘determinative’ (dioristic)

theorems; the last on some problems so ‘determined’ {haopia-

yaem).” The first three books were sent to Eudemus at intervals,

the remainder (after Eudemus’ death) to one Attains. All

(except the 3rd) are accompanied by little prefatory notes,

which repeat in effect the remarks of the first letter. The

preface to Book il. is interesting, as shewing the mode in

which Greek books were “published” at this time. It runs

“I have sent my son Apollonius to bring you the second

book of my Conics. Bead it carefully and communicate

it to such others as are worthy of it. If Philonides the

geometer, whom I introduced to you at Ephesus, comes into

the neighbourhood of Pergamum, give it to him also.”

It will be seen that Apollonius does not pretend that his

first three books were entirely new, but only that they were im-

provements on his predecessors. The statement of Pappus,

therefore, that Apollonius’ first four books are founded on the

Conics of Euclid is probably substantially true, and there may be

some foundation for the accusation of Heracleides that Apollonius

had stolen from the unpublished MSS. of Archimedes. But

how far the study of conics had been carried before Apollonius

cannot now be ascertained. Menaechmus, we know, first wrote

on the subject and advanced far enough to apprehend the

existence of asymptotes to the hyperbola. He was followed by

Aristaeus the elder, whose work was used by Euclid at least in

his treatment of the locus ad tres et quattuor lineas^, which

seem to have been partly discussed in his Conics^. But the

Conics of Menaechmus, Aristaeus and Euclid were almost

immediately driven out of the field by the superior book

of Apollonius, and the only clue to their contents is to be found

in those passages of Archimedes (especially in the Quadrat.

Paraholes and De Conoidibus) in which propositions in conics

1 Pappus VII. 34 (Hultscli p. 676). occurred. But it could hardly have been
^ Eutocius (Halley p. 12) did not in the t6xol wp^s iirKpaveig,, because

know where the passage of Euclid to the locus in question was a conic. See

which Apollonius refers in his preface, note on preceding page.
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are referred to as well known or assumed. A careful exami-

nation of these shews, in the first place positively, that almost

all the propositions which Archimedes uses are to be found

in the first three books of Apollonius ^ and, in the second place

negatively, that no predecessor of Apollonius was acquainted

with the names parabola^ ellipse and hyperbola, and with the

new treatment of conics which these names imply. It is

evident, therefore, that almost the whole of Apollonius’ work

was original.

132 .
Tfie completed work adheres closely to the lines

indicated in the prefatory letter, but it is obviously difficult to

give an intelligible or readable analysis of a huge treatise

in which the propositions do not, as they generally do with

Archimedes, lead gradually up to one crowning achievement.

The theorems, of course, are in great measure identical with

those of the modern text-books, but a summary of them, if

stated in modern language, would lose historical suggestiveness,

and, if stated in the language of Apollonius, would generally be

tedious or incomprehensible. This paragraph, therefore, and

the next are to be regarded only as containing some hints upon

the matter and manner of Apollonius.

Book I. begins with a series of definitions. If a line be

drawn from a fixed point to the circumference of a circle, which

is not in the plane of the point, and the line revolve round the

circumference of the circle, it describes a cone, of which the

circle is the base, the fixed point the vertex. The axis is the

line joining the vertex and the centre of the base. If the axis

is at right angles to the base, the cone is right

:

if otherwise,

scalene. “Of every curve in one plane, that straight line is

a diameter which, being drawn from the curve, bisects all the

straight lines drawn in the curve parallel to a certain straight

line.” The extremity of the diameter on the curve is the

vertex of the curve : each of the parallels is drawn ordinatim

1 See Heiberg in Zeitschr. fiir Math. 21, 26, 33, 35, 36, 46, 49 : ii. 3, 12, 13,

u. Phys. Hist. Lit. Abth. xxv. pp. 41 27, 49: iii. 17: vi. def. 7, props. 2

sqq. and a summary of this in Litter- and 11, of Apollonius were known to

argesch. iiler Euclid, pp. 86—88. He his predecessors,

concludes that the props, i. 11, 17, 20,
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{rerar^fjbevm KarrjKTaL “is an ordinate'') to the diameter. Of

two curves in one plane, that straight line is a transverse

(TrXayU) diameter which, cutting both curves, is a diameter of

each; and that straight line is an erect (opOla) diameter,

which, lying between the curves, bisects all the lines inter-

cepted between them which are parallel to a certain straight

line. Conjugate (crv^vyels) diameters are straight lines of

which each is a diameter and each bisects the straight lines

parallel to the other. The axis of the curve (or of two

curves) is the diameter which bisects the parallels at right

angles, and conjugate axes are the conjugate diameters, each of

which bisects the parallels to the other at right angles. The

definitions of the centre of the ellipse and the conjugate hyper-

bolas and one or two more are added after Prop. xvi. Book VI.

begins with the definitions of similar and dissimilar conics and

segments of conics. But many of the most important definitions

(e.g. of parabola, ellipse and hyperbola, latus rectum and trans-

versum, conjugate hyperbolas and asymptotes) are contained in

the propositions in which the things defined first appear. The

seven extant books contain on an average about 50 propositions

apiece.

The first and most striking of the novelties which are due

to Apollonius himself is his mode of producing the three conic

sections and the names and descriptions which he gives of

them. It will be remembered that his predecessors had always

cut the cone by a plane at right angles to one of its sides, and

had therefore produced the parabola as the section of a “right-

angled cone,” the ellipse in an “ acute-angled cone,” the hyper-

bola in an “ obtuse-angled cone.” Apollonius produces all

these sections in one and the same cone, whether right or

scalene, cut by a plane which is parallel or not parallel to one of

its sides. The old names, therefore, ceased to be appropriate,

and new ones were required. It will be remembered, again,

that a rectangle, applied to a straight line, was said Trapa-

^dWeadaL, if its base exactly coincided with the line, virep-

^dWetv, if it exceeded the line, iWeiirecv, if it fell short of it.

Fiom these technical terms, Apollonius derived his new names.

Let G be any point on a conic of whiph AJ5 is the axis, and from
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C draw CD perpendicular to AB, cutting off (the abscissa) AD.
From A draw AE at right angles to AB and equal in length to

what we now call the latus rectum of the conic. Draw a rectangle

equal to the square on CD and having AD for one of its sides.

If this rectangle, applied to AE^ has its other side exactly coin-

ciding {irapa/SaWo/aevov) with AE, the conic is a parabola. If

the side applied to AE is too short (eXXetTret), the conic is an

ellipse: if it is too long {virep^aKkei), the conic is a hyper-

bola. (In the language of modern analytical conics, if p he the

parameter, the Parabola is so-called because y'^ = px: the Hyper-

bola because y^ >px : the Ellipse because y^ <px.) It is in this

way that Apollonius gets rid of the cone and exhibits the conic

as a plane locus. But he does not define the conic with any

reference whatever to a focus and directrix. The focus of an

ellipse and hyperbola he discovers only incidentally (ill. props.

45—52) : he does not discover the focus of a parabola at all and

has no notion of a directrix for any conic \

These remarks being premised, the critique of M. Chasles,

which repeats some of them in another form, may be here

substantially reproduced ^ Almost the whole of the learned

treatise of Apollonius, he says, “depends upon a single property

of the conic sections, which is derived directly from the nature

of the cone in which these curves are formed....Conceive an

oblique cone on a circular base. A plane, passing through the

axis, perpendicularly to the base, produces a triangular section^

which is called the triangle through the axis.
^
Apollonius sup-

poses, in the formation of his conic sections, the cutting plane

^ Pappus VII. 238 (p. 1013) first

suggested the focus of a parabola and

the directrix. The theory of foci was

first worked out by Kepler
;
Newton

first made any use of the directrix,

which was adopted from him by Bos-

covich. Taylor, Ancient and Mod,

Conics, Liv., Lxv., lxxi.

2 Apergu, pp. 18— 20. I select this

passage because it rather happily com-

bines some information on the nomen-

clature and elementary propositions of

Apollonius, with some indications of

the profounder part of his researches,

A much fuller summary is given by

Mr Taylor, Ancient and Modern Conics,

pp. xLii.—L. Montucla (i. p. 247) is

extremely brief. Cantor (pp. 290—296)

is tolerably full, but gives no precise

references. The fact is that Apollonius

is tedious, as Prof, de Morgan found

him (Art. “Apoll.” in Penny Cy-

clop.).
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to be perpendicular to the triangle through the axis. The

points in which this plane meets the sides of the triangle are

the vertices of the curve, and the straight line joining these

points is a diameter of it. Apollonius calls this diameter latus

transversum {ifKa^iay.

“ At one of the two vertices of the curve erect a perpendi-

cular to the plane of the triangle through the axis, of a certain

lenofth, to be determined as herein-after mentioned : and from

the extremity of this perpendicular draw a straight line to the

other vertex of the curve. Now, from any point in the diameter

of the curve draw at right angles an ordinate: the square of

this ordinate, lying between the diameter and the curve, will be

equal to the rectangle contained by the part of the ordinate

comprised between the diameter and the straight line and the

part of the diameter comprised between the first vertex and the

foot of the ordinate. Such is the generic {priginaire) and

characteristic property which Apollonius recognises in his conic

sections and which he uses for the purpose of inferring from it,

by very adroit transformations and deductions, almost all the

rest. It plays, as will be seen, in his hands, almost the same

part as the equation of the second degree with two variables in

the system of Analytical Geometry of Descartes.

“ It will be observed that the diameter of the curve and the

perpendicular raised at one of its extremities, suffice to construct

the curve. These are the two elements which the ancients

used to establish their theory of conics. The perpendicular in

question was called by them latus erectum (opdla) : the moderns

first changed this name to that of latus rectum, which was long

employed, and afterwards replaced it by parameter, which has

remained. Apollonius and the geometers who wrote after him
gave different geometrical expressions, found in the cone, for the

length of this latus rectum for each section, but none has

appeared to us so simple and elegant as that of Jacques

Bernoulli. It is as follows : Take a plane parallel to the base of

the cone and situate at the same distance from its vertex as the

plane of the proposed conic : this plane will cut the cone in a

A parabola, having only one vertex, has no latus transversum.
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circle, the diameter of which will be the latus rectum of the

conic \ From this it is easy to infer the mode of placing a

given conic in a given cone.

‘'The most interesting properties of the conics are to be

found in the treatise of Apollonius. We may cite those of the

asymptotes, which form the chief part of Book ii. : the constant

ratio of the products of the segments made by a conic on two

transversals parallel to two fixed axes and drawn through any

point (props. 16—23 of Book iii.) : the principal properties of

the foci of the ellipse and hyperbola (ill. 45—52)^: the two

pretty theorems on conjugate diameters (vii. 12 and 22

:

30. and 31).

“We ought also to cite the following theorem, which has

obtained so great importance in recent geometry as the basis of

the theory of reciprocal polars, and which LaHire had, earlier,

made the foundation of his theory of conics. ‘ If, through the

point of concourse of two tangents to a conic section, a trans-

versal be drawn which meets the curve in two points, and the

chord which joins the points of contact of the two tangents in a

third point, as the whole transversal to the part of it outside

the curve, so are the segments of the chord to one another’

(ill. 37) ^

“ The first 23 propositions of Book iv. relate to the harmonic

division of straight lines drawn in the plane of a conic. These

are, for the most part, different cases of the theorem just enun-

ciated. In the following propositions Apollonius considers

the system of two conics and shews that these curves can cut

one another only in four points. He examines what happens

when they touch one another in one or in two points and treats

^ Novum theorema 'pro doctr. Sect.

Conic, in the Leipzig Acta Eruditorum,

anno 1689, p. 586.

2 The foci are called “points of

application.”

3 Save for the use of the word

“transversal” I give the enunciation

practically as it stands in Apollonius.

Chasles converts it into modern phra-

seology, concluding “cetroisieine point

et le point de concours des deux tan-

gentes seront conjugues harmoniquespax

rapport aux deux premiers.” So Mr
Taylor, p. xlv. “Any chord through

the intersection of two tangents to a

conic is cut harmonically by their

point of concourse and their chord of

contact” (ill. 37—40). Apollonius does

not use the word “harmonic,” but

gives his proportions in full.
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various other cases of the respective positions which they can

present \

Book V. is the most precious monument of the genius of

Apollonius. Here, for the first time, appear questions of maxi-

ma and minima‘s. The book contains all that the analytical

methods of to-day teach us on this subject, and we may recog-

nise in it the germ of the beautiful theory of evolutes (deve-

lopp^esy. In fact, Apollonius proves that there is, on each side

of the axis of a conic, a succession of points from which only one

normal can be drawn to the opposite part of the curve : he gives

the construction of these points and observes that their con-

tinuity separates two spaces which present this remarkable

difference, viz. : from any point of the one two normals can be

drawn to the curve and none can be drawn from any point of

the other. Here then we have centres of osculation (curvature)

and the evolute of a conic perfectly determined ^ Apollonius

makes use of an auxiliary hyperbola, of which he determines

the elements, for the purpose of constructing the feet of the

normals let fall, from a given point, on the proposed conic. All

these investigations are conducted with admirable sagacity.”

It should be added that Book Vl. treats mainly of similar

conics : Book vii. of conjugate diameters. Book viii., as restored

by Halley, consists of 33 problems (or porisms, as he might have

called them) to find conjugate diameters which satisfy certain

given conditions.

133 . It will be obvious that, for the mere purpose of

illustrating the style of Apollonius, one proposition will do

almost as well as another. The proofs, which I shall give in

this section, are those of two propositions of exceptional histori-

cal interest.

Prop. II. of Book l. exhibits the characteristic of the parabola

above described. The enunciation (slightly abbreviated) is as

1 Every proposition in Bk. iv. is

proved by reductio ad absurdum.

2 This is not quite true. Euclid vi.

27 {supra p. 84, n.), is the first known
proposition in which a maximum is

found. Compare also the determination

given by Archimedes De Sph. et GyL

II. 5, given above, p. 225, n.

^ Suggested first by Huyghens in

1673. Taylor, Conics, pp. 221, 222.

^ The remarks of Chasles on Bk. v.

are practically identical with Mon-
tucla’s.
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follows : If a cone be cut by a plane through the axis and by

another plane cutting its base along a straight line which is

perpendicular to the triangle through the axis, and the diameter^

of the section be parallel to one of the sides of the triangle

through the axis: the square of the straight line which is drawn

to the diameter from the section of the cone parallel to the

common section of the cutting plane and the base of the cone

will be equal to the area contained by the abscissa (77 dTroXa/n^a-

vofievT]) of the diameter and a certain other line which has, to

the straight line lying between the angle of the cone and the

vertex of the segment, the same ratio which the square on the

base of the axial triangle has to the rectangle under its sides.

Let a section of this sort be called a Parabola^

The proof (somewhat abridged) is as follows

:

A

ABF is the axial triangle. Let the cone be cut also

by a plane which cuts its base along AE, at right angles

to BF. AZE is the conic, ZH its diameter, parallel to AF,

one side of the axial triangle. From Z draw Z® at right

angles to ZH, making Z@ : ZA :: BF^ : AB . AF. From any

point K on the curve draw KA parallel to AE, meeting the

diameter in A. Then KA‘^ = ®Z . ZA.

Through A draw MN, parallel to BF. Now KA is parallel

to AE, therefore the plane through KA, MN is parallel to the

plane through BF, AE, i.e. to the base of the cone. Therefore

1 This diameter, which is in fact the diameter e/c yevu-^crews, “arising from

axis, is called in the corollary to i. 46 the generation of the curve.”

the 'princi'pal {apxiKifj) diameter or the
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the plane through KA, MN is a circle, of which MN is a

diameter. And KA is perpendicular to MN (as AE to BE).

Therefore KA" = MA . AN\
And since BE" : BA . AE :: @Z : ZA, but BE" : BA . AE

is the ratio compounded of BE : EA and BE : EA, there-

fore @Z : ZA is the same compounded ratio. But

BE : EA MN : NA :: MA : AZ

;

and BE : BA :: MN : MA :: MA : MZ :: the remainder NA: the

remainder ZA. Therefore @Z : ZA (being compounded of the

ratios MA : AZ and NA : ZA) is MA . NA : AZ . ZA.

But 0Z : ZA :: @Z . ZA : ZA . ZA. Therefore

MA . NA = @Z . ZA. But MA . NA = KA", as already proved.

Therefore KA" = @Z . ZA. Q. E. D.

The proof concludes with a direction that @Z may be called

either the line related to the squares of the ordinates (Trap*

hyvavrai) or latus rectum (opOla).

The enunciation of I. 12 establishes a similar law for the

hyperbola. “ If a cone be cut by a plane through the axis and

by another plane cutting its base along a straight line perpen-

dicular to the base of the axial triangle, and the diameter of the

section produced meet one side of the axial triangle produced on

the other side of the vertex", the square of any ordinate (described

as before) will be equal to an area {applied to a certain straight*

line, to which the portion of the diameter of the conic produced,

which subtends the exterior angle of the triangle, has the same

ratio as the square of the straight line which is drawn, parallel

to the diameter, from the vertex of the cone to the base of the

triangle has to the rectangle contained by the segments of that

base made by it) having for its side the abscissa and excessive

{virepPaXkov) by a figure similar and similar in position to that*

which is contained by the straight line subtending the external

angle of the triangle and the straight line to which the area,

equal to the square of the ordinates, is to be applied (77 evOela

Trap' hvvavraL al Karajopbevat). Let a section of this kind

be called a Hyperbola!' This rigmarole (abridged from the

1 The nomenclature is remarkable. airb.

TO apa virb tQv MAN ’i(xov iarl ry dirb ^ Two cones, having a common
Tov KA. Notice the use of inrb and vertex, may here be supposed.

G. G. M. 17
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original) will be easier to follow by reference to the figured

A

in which ABF is the axial triangle : AZE the section : ZH the

diameter produced to meet FA in @. MN is the ordinate.

Then is equal to an area applied to ZA, which line is

perpendicular to ZH, and is such that @Z : ZA :: AK^ : BK . KF,

the line AK being drawn parallel to the diameter ZH. The
area in question, Z3, has the abscissa ZN for one side, and

is such that it “overlaps” {ywepfidWec) the line ZA by the

figure A3 which is similar and similar in position to the

rectangle ®Z . ZA. The line ZA is drawn at right angles to

ZH. From N, N03 is drawn parallel to ZA, and the point 3 is

that in which @A produced meets N03. The only addition

made to the figure for the purpose of the proof is that, through

N, P2 is drawn parallel to BF. The proof is of the same kind

as that for the parabola, but concludes with the additional

statement that @Z is to be called irXayla, latus transversum.

The next proposition (i. 13) contains a similar theorem with

regard to the ellipse. The latus rectum is determined precisely

as before. The square of the ordinate is equal to an area

applied to the latus rectum^ but deficient by a figure similar and

similar in position to the rectangle under the latus transversum

and the latus rectum. The proposition contains also directions

for producing an elliptical section.

1 In the figure AO and n£J ought to be parallel to ZN.
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Book III. prop. 45, first exhibits the foci of the ellipse and

hyperbola. The enunciation is as follows :
“ If in a hyperbola

or ellipse or circle or conjugate hyperbolas, from the extremities

of the axis there be drawn straight lines at right angles, and a

rectangle equal to a fourth part of the figure^ be applied to the

axis at either end, in the hyperbola or conjugate hyperbolas

excessive by a square but in the ellipse deficient, and there be

drawn a tangent to the curve meeting the straight lines drawn

at right angles as aforesaid, the straight lines drawn from the

points of concourse to the points determined hy the application

aforesaid (jd etc riji; jrapa/SoXi]^ yeveOevra o-rjfjLeca) make right

angles at those points.”

The proof is as follows

;

Let AB be the axis of any of the proposed sections, and

draw AF, BA at right angles to this. TEA is a tangent. And
let a rectangle equal to a fourth part of the figure be applied

at either end of AB, as above mentioned, viz. the rectangles

1 The figure (t6 eUos) is the rectangle overlaps by a square, and in an ellipse

contained by the latus transversum and is deficient by a square. See Taylor,

the latus rectum. A rectangle, equal to Anc. and Mod. ConicSy pp. xliv. 81 n.

one-fourth of this, is to be applied to 111 Schol. E.

the axis, so that in a hyperbola it

17—2
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AZ . ZB, AH . HB : and join TZ, TH, AZ, AH. The angles

rZA and FHA are right angles.

It has been shewn (ill. 42) that the rectangle AF . BA is

equal to the fourth part of “ the figure ” on AB. Therefore the

rectangle AZ . ZB = the rectangle AT . BA. Therefore

FA : AZ :: ZB : BA.

And the angles at A and B are right angles. Therefore the

angle AFZ = the angle BZA and angle AZF = angle ZAB.
And the angles AFZ, AZF are together equal to a right angle,

therefore the angles AZF, BZA are equal to a right angle :

therefore the remainder AZF is a right angle. Similarly, FHA
may be proved to be a right angle.

The following propositions, XLVI.—Lll., deal with some other

theorems suggested by the same construction.

The two proofs, here given, which are both comparatively

easy, will perhaps suffice to indicate to the reader the lack of

technical terms and symbols, and consequently the cumbrous

modes of proof, which characterise the higher Greek geometry.

It seems superfluous to add more specimens, which probably no

one would read.

134. The century which produced Euclid, Archimedes and

Apollonius was, beyond question, the time at which Greek

mathematical genius attained its highest development. For

many centuries afterwards geometry remained a favourite study,

but no substantive work flt to be compared with the Sphere and

Cylinder or the Conics was ever produced. One great invention,

trigonometry, remains to be completed, but trigonometry with

the Greeks remained always the instrument of astronomy and

was not used^ in any other branch of mathematics, pure or

applied. The geometers who succeed to Apollonius are pro-

fessors who signalised themselves by this or that pretty little

discovery or by some commentary on the classical treatises.

‘‘The works of Archimedes and Apollonius,” says M. Chasles^,

“ marked the most brilliant epoch of ancient geometry. They

may be regarded, moreover, as the origin and foundation of two

questions which have occupied geometers at all periods. The

greater part of their works are connected with these apd are

1 Except, perhaps, by Heron. See below, pp . 283, 284. ^ Apergu, pp. 22, 23.
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divided by them into two classes, so that they seem to share

between them the domain of geometry.
‘‘ The first of these two great questions is the quadrature of

curvilinear figures, which gave birth to the calculus of the

infinite, conceived and brought to perfection successively by

Kepler, Cavalieri, Fermat, Leibnitz and Newton. ^
“ The second is the theory of conic sections, for which were

invented first the geometrical analysis of the ancients, afterwards

the methods of perspective and of transversals. This was the

prelude to the theory of geometrical curves of all degrees, and

to that considerable portion of geometry which considers, in the

general properties of extension, only the forms and situations of

figures, and uses only the intersection of lines or surfaces and the

ratios of rectilineal distances.

“ These two great divisions of geometry, which have each its

peculiar character, may be designated by the names of Geometry

of Measurements and Geometry of Forms and Situations^ or

Geometry of Archimedes and Geometry of Apollonius

135 . It remains only to add a few words on a great number
of other geometrical works which are attributed to Apollonius.

Pappus^ ascribes to him the following works (1) On Contacts

(jrepl iTra^wv), (2) On Plane Loci (iTrLireSot roiroi), (8) On
Inclinations {irepl vevcrewv), (4) On Section of an Area {irepl

Xoyplov d7roTopLrj<;), (5) On the Determinate Section (irepl hmpLo--

pL€V7)<; Toyrj^), and gives a few lemmas, from which attempts

have been made to reconstruct the lost originals®. Vieta

restored the 1st in his Apollonius Gallus

:

Fermat in 1637 and

Simson in 1746 attempted the 2nd: Ghetaldi the 3rd : Halley

(in his edition of De Sectione Rationis) restored the 4th

:

Snellius, Ghetaldi, and Simson, again, worked at the 5th. All

1

“These two divisions,” he adds,

“are those of all the mathematical

sciences which have for their aim, to

use Descartes’ expression, the investi-

gation of order and measure. ” Aristotle

had already uttered the same thought

in these terms : “With what are mathe-

maticians concerned save with order

and proportion?^’ The quotations are

from Descartes, Regiespour la direction

de VEsprit, 14® and 4® Regie, Aristotle,

Metaph. xi. 3.

2 VII. Nos. 298—311, pp. 990—1004

(Hultsch).

3 See Montucla, i. pp. 251, 252 and

notes F and G, pp. 285—288.
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of these were certainly exercises in geometrical analysis, and an

account of their supposed contents is given by Montucla, but

does not seem worth citing. The passage, however, in which

the same writer mentions Vieta’s restoration of the work On
Contacts is interesting as illustrating the manners and customs

of mathematicians at a time when they were more dependent

on Greek learning than they are now. Vieta (1540—1603)

having a contention with one Adrianus Romanus, a clever

geometer of the Low Countries, took occasion ‘‘to propose to

him the principal problem, and the only difficult one in the book

{On Contacts). It is this : Three circles being given, to find a

fourth, which shall touch the three. Romanus solved this badly

by adopting the expedient which presents itself at first sight

and determining the centre of the desired circle by the inter-

section of two hyperbolas. The objection is that the problem

is plane, and can consequently be solved by the aid of ordinary

geometry. Yieta solved it in this way and very elegantly : his

solution is the same as that in the Arithmetica Universalis^ of

Newton. Another is given in the 1st Book of the Principia^y

where this question is necessary for some determinations of

physical astronomy. Here Newton, with remarkable skill,

reduces the two solid loci of Romanus to the intersection of two

straight lines. This problem, one of those to which algebraical

analysis does not lend itself with facility, occupied Descartes

also : and of two solutions which he found, he admits that one

gave an expression so complicated that he would not undertake

to construct it in a month. The other, though less crabbed,

was sufficiently so to prevent Descartes from touching it. We
may mention finally, on the subject of this problem, an anecdote

which in a way illustrates it. The princess Elizabeth of Bo-

hemia®, who, as is well-known, honoured our philosopher (Des-

cartes) with her correspondence, deigned; to occupy herself with

it and sent him a solution, but as this is derived from algebraic

calculation, it is open to the same objection as that of Descartes.”

But a work of Apollonius called De Bectione Bationis was

translated from the Arabic and published by Halley in 1706.

This deals with the cases of one problem, which is as follows.

^ Prob. XLVii. 2 Lemma xvi. ^ Daughter of our James I.
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Two straight lines of infinite length, MN^ PQ, are in one plane,

parallel to one another or intersecting in a point. On each any

one point is taken (A and B respectively), and a point 0 is given

outside them. It is required to draw from 0 a straight line

meeting MN, PQ in the points G and i), so that the sequents

A C, BD shall be in a given ratio. In the first book, 14 cases are

treated, where the lines are parallel and where they intersect,

but the points A, B upon them are the point of their intersection.

The second book contains 63 cases. All are solved analytically

with the aid of conics \

A work of Apollonius on Unclassed Incommensurahles (d\o-

r/oL draKTOL) is mentioned in an Arabic commentary on Euclid’s

lOth Book, which is translated from a Greek commentary,

written perhaps by Vettius Valens, a Byzantine astronomer of

the 2nd century. It is, however, impossible to discern from

the commentary what these "unclassed incommensurahles”

were^ Hypsicles (see below) knew another work of Apollonius,

and Proclus (p. 105) mentions a treatise on the screw.

136 . Lastly, Eutocius, in his often-cited commentary to the

Sphere and Cylinder, attributes to Apollonius, Heron and Philon

of Byzantium, methods of duplication which are practically

identical, and which Apollonius, as the oldest of these three

mathematicians, must be taken to have invented^ This solution

is in effect as follows. If AB, AC he the two straight lines

between which it is required to find two mean proportionals,

place them at right angles to one another, the right angle being

at the common extremity A, and complete the parallelogram

ABDG.
Join BG and bisect it in E. From the centre E describe a

circle EG, cutting AB, AG produced in F and G, so that the

^ On all these minor works of Apol-

lonius,the lemmasw^on themin Pappus’

viith Book and the important antici-

pations of modern geometry which

these contain, see Chasles, Apergu, pp.

28—47.
2 Cantor, pp. 299—301, quoting an

essay ofWoepcke’s in Memoirespresentes
a VAcad. des Sciences, xiv. 658—720,

Paris, 1856, and Chasles in Comptes

XXXVII. 553—568 (Oct. 17, 1853).

3 Philon may he the oldest, for Vi-

truvius assignshim toAlexander’s reign,

but other authorities give him a much
later date, about b.c. 150. Heron’s solu-

tion is given first by Eutocius (Torelli,

pp. 136—138). Philon constructs the

figure a little more conveniently.
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points F, By G are on the same straight line. “ This may be

effected if a ruler {fcavovLov) cutting AF, AG be turned about

D until EFy EG are equal.” From E draw EH perpendicular

to ^(7 and bisecting it in H,

Then (by Euc. ii, <o) AG . GO+ HG^ = HQ\ Add EH^ to

each equal. Then AG , GC+ EG^ = EG^. In the same manner

it may be shewn that AF . FB+ EB"^ = EF^ — EG'^. And
EG^ = EB\ Therefore AG . GG AF . FB and

AG : AF :: FB : GG.

But, by similar triangles, AG : AF :: GG : GD BD : BF,

Therefore BD : BF :: BF : GG :: GG : GD,



CHAPTER VIII.

THE SECOND CENTURY B.C.

137 . The materials for a history of Greek geometry after

Apollonius are both scanty in quantity and most unsatisfactory

in quality. We know the names of many geometers who lived

during the next three centuries, but very few indeed of their

works have come down to us, and we are compelled to rely for

the most part on such scraps of information as the later

scholiasts. Pappus, Proclus, Eutocius and the like, have inci-

dentally preserved. But this information, again, generally affords

little clue to the date of the geometer in question. Thus,

though we have abundant evidence that mathematics remained

a chief constituent of the Greek liberal curriculum, we cannot

tell with any accuracy what subjects were most in vogue or

what mathematicians were most generally regarded at any

particular time. It is certain, however, that during the whole

period between Apollonius and Ptolemy only two mathemati-

cians of real genius, Hipparchus and Heron, appeared, that both

of these lived about the same time (120 B.C.), and that neither

was interested in mathematics per se, for Hipparchus was

above all things an astronomer. Heron above all things a sur-

veyor and engineer. The result might have been different if

some new methods had been introduced. The force of nature

could go no further in the same direction than the ingenious

applications of exhaustion by Archimedes and the portentous

sentences in which Apollonius enunciates a proposition in

conics. A briefer symbolism, an analytical geometry, an infini-

tesimal calculus were wanted, but against these there stood the

tremendous authority of the Platonic and Euclidean tradition,
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and no discoveries were made in physics or astronomy which

rendered them imperatively necessary. It remained only for

mathematicians, as Cantor says, to descend from the height

which they had reached and “ in the descent to pause here and

there and look around at details which had been passed by in

the hasty ascent The elements of planimetry were exhausted,

and the theory of conic sections. In stereometry something

still remained to he done, and new curves, suggested by the

spiral of Archimedes, could still be investigated. Finally, the

arithmetical determination of geometrical ratios, in the style of

the Measurement of the Circle, offered a considerable field of

research, and to these subjects mathematicians now devoted

themselves.

138 . One of the first of the successors of Apollonius was

perhaps Nicomedes, who invented the curve called conchoid or

“mussel-like.” At any rate the conchoid was known to Geminus

about B.C. 70^, and Eutocius® says that Nicomedes made sport

of Eratosthenes’ mesolabium, and boasted the superiority of his

own invention. It is not likely that Eratosthenes had been

long dead at this time.

The treatise on the conchoid which Nicomedes wrote is

known to us only from Eutocius’ commentary on duplication,

from Pappus ^ and two or three casual remarks of Proclus. It

is a curve such that the straight line joining any point on the

1 Cantor, p. 301, cf. p. 233. 2 Produs, p. 177. s Torelli, p. 146.

^ Book IV. (Hultsch) pp. 244—246.
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curve with a given point is cut by a given straight line so that

the segment between the curve and the given straight line is of

a given length. Nicomedes invented a little machine for

describing it, of the form here depicted. It will be seen that

the arm AB can move only horizontally along DE, to which it

is confined by a button G sliding in a groove. The length AG
therefore is constant. The point E was called the* pole (ttoXo?).

The method of duplication, with the aid of the conchoid,

may be thus described.

Let oik and a/5 be the given straight lines between which it

is required to find two mean proportionals. Place these at right

angles to one another (as in the solution of Apollonius), and

complete the rectangle a^<yk.

Produce 7^ to tj, making ^7] = ^7, and join rfk, bisecting a/9

in S. Bisect in e, and from e draw ef at right angles to ^87,

so that 7^= /5S. Join and through 7 draw 7^ parallel to

From f, as pole, with 7^ as fixed straight line and as the
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length of the constant segment describe a conchoid, cutting

7](3 produced in k. Join k\ and produce it to meet /3a pro-

duced in ya. Then a/x and 7^: are the two mean proportionals

required. By similar triangl
fia _ X,7 « _ * ^7

.eS "“T . • LbCL — '
,

aX 7/c 7/c
Now

• 0iC
a\ .\ry = 7]y . /33, (since y x 2x = 2y x x),

. fia = — . But

^ = I /.a = and +f =

By the use of Euc. ii. 6 (precisely as in the solution of

Apollonius) it may he shewn that . Ky + y'f‘ and

= /3ya
. yaa -f aS^. y3« . /C7 -f 7^^ = ySya

.
yaa + a8^ But

y\^ — aS^ . Ky = jSjJb . yaa. .’. /3ya : /Sk = Ky : fiOL. But

/3ya : 13k = y\ :
yK = ol/jl : a\.

. y\ :
yK — yK : aya = aya : aX.

The conchoid was also used to solve the trisection of an angle

in a way which closely resembles the 8th of the lemmas attri-

buted to Archimedes {supra, p. 233). Proclus says that Nicomedes

himself solved this problem, but Pappus claims the solution

which he gives as his own\

Let a^y be the angle which it is required to trisect. From

a draw ay perpendicular to ^y. Complete the parallelogram.

Now from /3 as pole, with ay as fixed straight line and 2ayS as

constant distance describe a conchoid which shall meet fa pro-

duced in 6 . The line /Se cuts ay in 3. Bisect Be in y and join ay.

It is then easy to see that ari = ye = a/3 and the triangles a^y, aye

are isosceles. Therefore the exterior angle ayp = 2aey = ^y^y,

and the angle ay^ — a/3y = 2yl3y. ,

139 , Probably at the same time as Nicomedes, say 180 B.C.,

lived Diodes, the inventor of the cissoid or ivy-like ” curve.

His date can be approximately determined only by the two

^ Proclus, p. 272
;
Pappus iv. 38, p. 274 (Hultsch).
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facts that Geminus knew the cissoid by this name, and Diodes

lived after Archimedes, for he wrote a commentary on the un-

finished problem (ii. 5, supra, p. 225?i) of the Sphere and Cylin-

der. The work in which this occurs was called irepl Trvplcov or

TTVpelcov^, whatever that may mean, and contained also a

solution of the duplication problem which Eutocius cites with

the rest^ This solution, which involves also the definition of

the cissoid, may be described as follows. Let a/S and 78 be

diameters of a circle at right angles to one another. On 78, at

equal distances on either side of the centre X, take the points

K and 7], and draw the ordinates /re, Join e8, cutting
97

f

in 6. The point 6 (as also all other points similarly determined)

lies on the cissoid. Also 797 : 77^= 97^ : 778 = 778 : 97^.

As 97^ is perpendicular to the diameter 78, it is plain that

797 : 97^= 97^ : 978. For a similar reason^, y/c : k6 = k6 : /c8. And
by similar triangles /ce: KB = r}6 : 978. Therefore jk : Ke^rjd : rj8

1 Eutocius in Torelli, p. 171. Uvpeiov

(which may be the right reading),

Lat. igniaria, was an instrument for

making fire, by turning a pointed per-

pendicular stick {rpiravov) in a hole

made in a flat board {iaxdpa). If this

was worked by strings, like a drill

(see the chapter on fire-drills in Tylor’s

Early Hist, of Mankind), then Diodes’

book may have been a treatise on

some geometrical theorems suggested

by the machine.
2 Torelli, p. 138. Cantor, pp. 306, 307.

The solutions of Pappus and Sporus(an

otherwise unknown geometer), which
Eutocius gives next, are practically

identical with this, though the con-

structions are not obtained with a
cissoid.

^ A shorter proof would run: ‘And

yy : 7)f= 8k : Ke = dr] : r]d. Therefore
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and /ce : /C7 = 7?S : 7)0. But k6 = 97^, and = 778. Therefore

7)^: r)h = 7)h : 7)0. Thus 97^, 97S are two mean proportionals

to 797, 7)0.

Now, in any circle, with diameters 78, at right angles to

one another, draw the corresponding cissoid. On the diameter

aft take a point tt such that 7^ : Xtt = a : h
,
where a and h are

the two straight lines to which two mean proportionals are

required. Join ryir and produce it to meet the cissoid in 0.

Then 797 : 97^ = a : It is now necessary only to alter the lines

97 7)h (which are known to be mean proportionals to 797, 97^) in

the ratio of 797 : a,
and the solution is obtained.

140 . In the same century, again, perhaps about the year

150 B.C. Perseus, a geometer who treated of the sections of the

crirelpa^,' seems to have lived. His date can be guessed only

from the facts that he is not included in the Eudemian summary,

that no notice is taken of him by the classical geometers, that

Heron describes the (nreipa (110 B.C.), and that the work of

Perseus was well known to Geminus^. The cnrelpa is somewhat

imperfectly described by Heron ^ as the solid “ produced by the

revolution of a circle which has its centre on the circumference

of another circle and which is perpendicular to the plane of that

other circle. This is also called a KpUo<^ (ring).” This solid

varies in form according to the ratios between the radii of the

two circles. It may resemble an anchor-ring or a modern tea-

cake, with a dimple at the centre. Proclus describes three

kinds of sections, which were obtained from it and which were

the same as those described above (p. 185), d propos of the

iTriroTreST) of Eudoxus. Elsewhere (p. 356, 12) he seems to

suggest that Perseus had treated the spiral sections as Apollonius

had treated the conics. From this, perhaps, it may be inferred

that whereas one or two sections of the Girelpa were known

before and were obtained from different forms of the solid,

Perseus investigated all the sections and shewed that they

1 Geminus in Proclus, pp. Ill, 112. in this connexion, on the errors of

2 The dates of Perseus, Nicomedes, Montucla. Bretschneider is obviously

Diodes, Serenus and Hypsicles are all right on all the dates except that of

discussed by Bretschneider {Anhang^ Serenus.

p. 175—end who is especially severe, ® Deff. 98, p. 27 of Hultsch’s ed.
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could be obtained from one o-ireLpa^. But the work of Perseus

is wholly lost, and no extracts whatever from it are preserved by

any later writer

^

141. There is not so much reason for assigning Zenodorus
to the 2nd century B. c. as there is for the other writers above

mentioned. He is later than Archimedes, whom he names, and

is older than 'Quintilian (A.D. 35—95) who names him. He is

supposed to be an early successor of the former merely because

his style recalls the classical period. He was the author of a

geometrical treatise on Figures of Equal Periphery, fourteen

propositions of which are preserved both by Pappus and Theon^

Both citations are almost verbally identical, but Theon does,

and Pappus does not, name Zenodorus as the author. Theon’s

ascription is confirmed by Proclus, who says that Zenodorus

called a quadrilateral with re-entrant angle a KoCkoydiVLov, which

word occurs in Theon’s extract. Of these fourteen propositions

five. Nos. 1, 2, 6, 7 and 14, are worth quoting. Prop. 1 is “ of

regular polygons with equal periphery, that is the greatest

which has most angles.” Prop. 2 is “ The circle has a greater

area than any polygon of equal periphery.” Prop. 6 is “ Two
similar isosceles triangles on unequal bases are together greater

than two dissimilar isosceles triangles which are upon the same

bases and have together the same periphery as the two similar

1 Bretschneider (pp. 179, 180) makes

a great difficulty about this, owing to

the fact that he mistranslated y] tov

iirirov Tridrj as “horse’s hoof” (p. 177)

instead of “horse-fetter.” He con-

ceived this apparently to be a curve of

the form instead of OO
and could not understand how it was

obtained from a a-veipa at all. His
mistake is the more remarkable be-

cause Proclus afterwards twice (pp.

127, 128) refers to the curve as iwiro-

which no decent scholar ought

to render “horse-hoof.”

2 Chasles (pp. 8, 9) speaking of the

spirals of Perseus and Geminus, says

“il serait int4ressant de voir leur

theorie g^om6trique de ces spiriques,

qui sont des courbes du quatrieme

degr4, dont I’etude semble exiger au-

jourd’hui des Equations de surfaces et

un calcul analytique assez profond.”

3

Pappusv.pt. I. p. 301 sqq. (Hultsch).

Theon. Comm. Almag. ed. Halma,

p. 33 sqq. reprinted by Hultsch in

Pappus, pp. 1190—1211, with a pre-

fatory note on the date of Zeno-

dorus. The fact that both Theon and
Pappus cite the same props, seems to

Hultsch {Pappus, Vol. iii. p. xv.) to

give colour to his theory that a large

part of Theon’s commentary was really

taken from Pappus.
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triangles.” Prop. 7 is “ Of polygons with equal periphery the

regular is the greatest.” Prop. 14 is “Of segments of circles,

having equal arcs, the semicircle is the greatest.” It is obvious

that investigations of this kind were closely connected with and

suggested by the work of Archimedes and Apollonius.

142. To the same century, again, Hypsicles is assigned.

To him the 14th and 15th Books added to Euclid’s Elements

are attributed by many MSS., but recent critics are of opinion

that these are by different authors^, and that only the 14th is

by Hypsicles. This is certainly not Euclid’s, for it has a preface

which cannot have been written by Euclid, and the Elements are

expressly stated by Marinus, in his prolegomena to the Data, to

consist of 13 books. The preface in question, which is addressed

to one Protarchus, is as follows :
“ Basilides of Tyre, coming to

Alexandria and making the acquaintance of my father through

their common love of mathematics, stayed with him during the

greater part of his visit. They were discussing at one time the

writings of Apollonius on the comparison of the dodecahedron

and the icosahedron inscribed in the same sphere^ shewing

what ratio these have to one another, and they came to the

conclusion that Apollonius was wrong. They therefore emended

the proof, as my father used to tell. But I afterwards came

across another book of Apollonius® containing a sound proof on

the subject, and was greatly incited to the investigation of the

problem. The publication of Apollonius may be seen anywhere,

for it has a large circulation, but I send you my lucubrations,”

etc. From this it is inferred, not very cogently, that Hypsicles’

father died in the lifetime of Apollonius, or that, at any rate,

Hypsicles cannot have lived long after the latter. But a more

satisfactory determination of Hypsicles’ date is obtained from

the fact that his astronomical work, 'Ava^opiKo^, does not use

the trigonometry which was certainly introduced by Hipparchus,

and would have been absurdly antiquated if written after

Hipparchus’ time (b.c. 180)^.

1 See esp. Friedlein in Bulletino ® This in xiv. prop. 2 is referred to

Boncompagni 1873, pp. 493—529. as second edition.”

2 This is the only mention of such ^ Bretschneider, p. 182, quoting Vos-

a treatise by Apollonius. sius and Delambre.
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The 14th Book of the Elements, or the book of Hypsicles on

'the Regular Solids’, consists of seven propositions, viz. 1. The

perpendicular from the centre of a circle to a side of the inscribed

regular pentagon is half the sum of the radius and the side of

an inscribed decagon. 2. The same circle comprises the

pentagon of a dodecahedron and the triangle of an icosahedron

inscribed in the same sphered 3. If from the centre of a

circle there be drawn a perpendicular to the side of the in-

scribed regular pentagon, thirty times the rectangle under the

perpendicular and the side is equal to the superficies of the cor-

responding dodecahedron. 4. The surface of the dodecahedron

is to that of the icosahedron as the side of the cube to the side

of the icosahedron. 5. The side of the cube is to that of the

icosahedron as {x + yY -^-x^ \
{x + yY + 2/^ where x is the greater,

and y the less, of the segments of a line cut in extreme and

mean ratio. 6. The volume of the dodecahedron is to that of

the icosahedron as the side of the cube to that of the icosahedron.

Prop. 7 is really a lemma to 6 and is that two straight lines cut

in extreme and mean ratio are to one another as their greater

segments.

The dvaipopLfco^;, or treatise on 'Risings’ {dva^opai), contains

only six propositions, of which the first three, dealing with

arithmetical progressions, have been already cited. The only

interesting proposition is the 4th, which is to the following

effects Divide the zodiac into 360 local degrees and the time

of its revolution into 360 chronic degrees. Then, given the

ratio, for any place on the earth, of the longest day to the

shortest, we can deduce the number of chronic degrees for each

number of local degrees ^ Here, for the first time in any Greek

work, we find a circle divided in the Babylonian manner into

360 degrees. This division, perhaps, was used by Eratosthenes

who is said to have calculated the length of a degree, but it is

1

The proof of this is said to be

given by Aristaeus in his work on

“The Comparison of the Five figures”

[nivTe a&yKpLais). This is

not mentioned by Pappus, who (vii.

pref.) alludes only to the arepeol tottoi

G. G. M.

of Aristaeus.

2 See Delambre Astr. Anc. i. pp.

246 sqq. The text was printed Paris,

1657, ed. J. Mentel.

3 Delambre loc. cit. pp. 248, 9 shews

that the proof is faulty.

18
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not necessary to suppose that Eratosthenes actually performed

this feat, though he undoubtedly shewed how it was to be

done\ and it is observable that Hypsicles introduces the division

as if it were a novelty. He does not, however, take the next

step, to trigonometry.

143, This was undoubtedly taken by Hipparchus, one of

the greatest geniuses of antiquity, the observer and thinker

upon whose work the whole system of Greek astronomy was

founded. He was a native of Nicaea in Bithynia and made
astronomical observations, certainly at Rhodes, possibly also

at Alexandria, between 161 and 127 B.c.^ But though the

Almagest of Ptolemy is clearly derived almost entirely from

writings of Hipparchus, none of the works of the earlier

astronomer have survived, save a commentary in three books

on the Phenomena of Aratus, a poor poet who copied Eudoxus.

The criticisms of Hipparchus on his predecessors are founded

chiefly on his own more accurate observations and have no

mathematical interest. In the Second Book, however®, he

claims to have invented a method of solving spherical triangles

for the purpose of finding the exact eastern point of the

ecliptic. The treatise in w^hich this was contained was called

t; Tft)v crvvavaToXwv TTpayfiaTeia, but is lost. Theon, in his

commentary on the Almagest, also states that Hipparchus

calculated a “table of chords” (i.e. practically of sines) in

^ Eratosthenes (Delambre, pp. 86

—

97) found that the distance between

the tropics was of the circumference.

This looks as if he had not, at that

time,, any division of the circle into

degrees. Similarly, he found that the

distance between Alexandria and Syene

(which he believed to be on the same

meridian) was of the circumference

of the earth, from which it was easy

to infer the length of a degree, though

perhaps Eratosthenes did not do this.

2 Delambre (i. p. 167, cf. p. 170)

gives a very neat instance of the way

in which Hipparchus’ date can be

ascertained. In the concluding chapter

of Book III. of his commentary on

Aratus, Hipparchus gives, in time, the

distances between stars, obtained by

observing their meridian passages.

He begins with tj Ganis, in his time on

the solstitial colure, longitude 90®. In

1750, this star was long. 116® 4' 10".

The precession here is 93850". This, at

50" per annum, would make the date

of the book about 130 b.c. Delambre

doubts whether Hipparchus was ever

at Alexandria, because Ptolemy does

not distinguish observations made at

Rhodes and Alexandria, which, he sup-

posed, were on the same meridian.

^ Delambre i. pp. 142, 3.
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twelve books. It is evident therefore that Hipparchus was the

founder of trigonometry, though we are obliged to look elsewhere

for information as to the progress of the Greeks in this depart-

ment of mathematics.

It is not intended, in these pages, to give a history of

Greek astronomy or to describe any astronomical theories,

which depend for their verification on observation and not

on deduction. But est modus in rebus and I do not like to

pass over Hipparchus with merely the customary eulogy. The
following little summary, taken from Helambre, wdll shew

what manner of man he was. It was he who determined

(very nearly but not with absolute accuracy) the precession of

the equinoxes, the inequality of the sun, and the place of its

apogee, as well as its mean motion : the mean motion of the

moon, its nodes and its apogee : the equation of the centre of

the moon and the inclination of its orbit. He had discovered

a second inequality of the moon (the evection), of which he

could not, for want of proper observations, find the period and

the law. He had commenced a more regular course of observa-

tions for the purpose of supplying his successors with the

means of finding the theory of the planets. He had both a

spherical and a plane trigonometry. He had traced a plani-

sphere by stereographic projection : he knew how to calculate

eclipses of the moon and to use them for the improvement of

the tables: he had an approximate knowledge of parallaxes,

more correct than Ptolemy’s. He invented the method of

describing the positions of places by reference to latitude and

longitude. What he w^anted was only better instruments.

Yet in his determination of the equations of the centres of

the sun and moon and of the inclination of the moon, he

erred only by a few minutes. For 300 years after his time

astronomy was stationary. Ptolemy followed him with little

originality. Some 800 years later the Arabs added a few

more discoveries and more accurate determinations and then

the science is stationary again till Copernicus, Tycho and

Kepler h

1 Delambre i. pp. 184—186. See —xxv, and De Morgan’s article Ptolemy

also his preliminary discourse pp. xxi in Smith’s Pic. of Gr. and Pom. Biogr.

18—2
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144 . The same century which gave birth to all these

writers produced also the famous Heron of Alexandriah He
was the pupil of Ctesibius of Alexandria, who, though originally

a barber, obtained great fame by his mechanical inventions,

especially a water-clock, a hydraulic organ and a catapult,

worked by compressed air. Ctesibius lived in the reign of

Ptolemy Euergetes II. (or Physcon, ‘pot-belly’), that is, between

170 and 1 17 B.C. His pupil Heron, therefore, may be taken

to have flourished about 120—100 B.C.

A very considerable number of writings, now extant, and

others not extant, but mentioned by ancient writers, are

attributed to a Heron, but it happens that the extant writings

are in an extraordinary state of corruption and confusion and

also that a great many Herons are known to history. It is

only within recent years that any attempt has been made to

bring order into this chaos. First Theodore Henri Martin, in

a monograph^ which is a model of its kind, investigated all

the facts concerning the life of the great Heron of Alexandria

and ascertained what works were rightly attributed to him and

which of them are extant and where. His biographical results

have been stated, in effect, in the above few lines. But his

essay deserves a closer analysis. He finds (pp. 10—18) eighteen

undoubted Herons named in later Greek literature, mathemati-

cians, doctors and monks. Of these, three only belong to the

first class, viz. Heron of Alexandria our author, Heron the

teacher of Proclus (who was possibly the same as one Heronas,

who wrote a commentary on the Arithmetic of Nicomachus)

and Heron of Constantinople, who lived in the 10th century ^

Then, after commenting on the date of the first Heron (pp.

22—28), he passes (pp. 28—51) to the works which are rightly

1 This writer is usually called by the

Latinized name Hero. Perhaps I

ought to use this (like Plato), but

there is a special advantage in retain-

ing the form Heron, because the more

familiar Hero was a woman.
^ Recherches sur la vie et les ouvrages

(VHeron d'Alcxandrie, disciple de Cte-

sibhis, etc. in Vol. iv. of Memoire*

presentes etc. a Vacademie dHnscrip-

tions etc., Paris, 1854.

3 Later writers, as Vincent, cited

below and Cantor, p. 315, deny that

there was such a person as Heron of

Constantinople and doubt whether

Heron, the teacher of Proclus, was a

mathematician at all.
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assigned to him. These are (1) yir]-)(aviKa or lSl[r)j(avLKa\

elaajcoyai, from which extracts are given by Pappus (ill. 5,

p. 63 and viii. 31—end). The book obviously treated of

centres of gravity and of the theory of the five simple machines,

the lever wedge (cr(/)ryz/), screw (Ko^Xca^;), pulley

{iroXva-iraa-Tov), and wheel and axle or windlass {d^wv ev

TrepLTpoxifp)- The work perhaps exists in MS. at the Escurial

or at Venice. (2) the BapoOX/co?, in three books, which dealt

with the problem of Archimedes to move a given weight with a

given power, perhaps exhibited the practical uses of these

machines. The first chapter of this is appended, perhaps by

accident, to the treatise irepl hioiTTpa^ and some extracts from

it are given by Pappus at the end of his Book viii. It exists

at Leyden in a Latin MS. translation made by Golius from the

Arabic. It is perhaps in Greek at Pome. (3) The KaraireX-

TiKci^ Pe\o7roLr]TLKd or f^eXoTTou/cd is printed in the Mathematici

Veteres^. The solution of the duplication-problem here given

is quoted in Pappus III. (4) x^^po^ccXicrTpa'^ KaraaKevi) koX

crvpbpL6TpLa, also in Math. Yett., but obviously an appendix to

(3). (5) KapuapiKa also in Math. Yett. but obviously an appen-

dix to (4). So is another fragment irepl KapL/Sea-rpLcov. Both

exist in MS. at Vienna. (6) avropbara and ^vyca, on certain

toys. The former is in Math. Yett. The latter is lost. (7)

Hepl vhpmv copoaKowelcov. This is mentioned in the irveypua-

TLKa and also by Pappus and Proclus. It is lost now but

existed in the lOth century. (8) irvevpbaTiKd, in the Math. YetV

1 This is a collection of writers on

engines of war, edited by Thevenot

and De la Hire, Paris, 1693. It con-

tains works of Heron and of Athenaeus,

Apollodorus (?both temp. Hadriani),

Philon
(
b .c . 330, acc. to Vitruvius vii.

pref.), Biton (probably soon after Alex-

ander the Great), Sextus Julius Afri-

canus {Kea-Tol, about a .d . 220), and a

treatise on siege-works, which Martin

ascribes to Heron of Constantinople.

Of the named authors (other than

Heron) all deal almost entirely with

catapults save Africanus, who has

some other matter. The date of

Athenaeus seems to me to be wrongly

given (on the authority of Heron of

Constantinople). He himself speaks

of Ctesibius as a contemporary and

dedicates his book to one Marcellus,

who may be the conqueror of Syra-

cuse.

2 An English translation of the

UpevfjiaTiKd, with woodcuts, was pub-

lished by J. G. Greenwood, London,

1851. The book contains an account

of 78 ingenious machines, some mere

toys as whistling birds, drinking figures
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(9) on Hydraulics and the armillary Astrolabe, according

to an Arabic compilation, now in the Bodleian {God. Arab.

CMLIV.). The following also are probably Herons, (10) Karoir-

Tpt/cd, cited by Hamianns who was not much later than

Ptolemy. This is probably the same work as the /caroirTpiKa

printed at Venice, 1518, and then ascribed to Ptolemy. (11)

Uepl BioTrrpaf;, on a kind of theodolite. This is ascribed to

Heron by the MSS. and was certainly written at Alexandria.

It has been edited by M. A. H. Yincenth (12) Scholia on

etc., but some more useful as a fire-

engine (27), a self-trimming lamp (33),

a new kind of cupping-glass (56), a

water-clock (63), two small organs (76

& 77). In most of these, the action

depends on a vacuum into which water

will flow. But no. 50 is a toy in which

a metal sphere, filled with steam, is

made to revolve by the action of the

steam as it issues from two bent spouts

fixed in the sphere. (Compare also no.

70). Heron does not claim all the

discoveries as his own, and it is curious

that Vitruvius (ix. 8 & x. 7) and Pliny

(vii. 38), describing similar inventions,

attribute them to Ctesibius and say

nothing of Heron. The preface shews

clearly that Heron did not understand

the pressure of the air as causing the

fiUing of the vacuum, but ascribed this

result to nature’s abhorrence.

1 Text and translation in Notices et

Extraits des MSS. de la Biblioth.

Imper. Vol. xix. Pt. ii. Paris, 1858,

p. 157 sqq. The book contains 33

props, of which the last is the first of

the (SapovXicos. The others are of the

following kind (1) to find the difference

of level between two points, (13) to

cut a straight tunnel through a hill

from one given point to another, (14)

and (15) to sink a vertical shaft to

meet a horizontal tunnel, (24) to

measure a field without entering it.

The dioptra was a straight plank, eight

or nine feet long, mounted on a stand

but capable of turning through a semi-

circle. It was adjusted by screws,

turning cogwheels. There was an

eyepiece at each end and a water-level

at the side. With the dioptra two

poles, bearing discs, were used, exactly

as by modern surveyors. Two append-

ed props. (34) and (35) describe a

hodometer, an arrangement of cog-

wheels attached to a carriage, so

that eight revolutions of the wheel

turn the first cogwheel once and the

motion is then slackened down through

a series of cogwheels of which the last

moves a pointer on a measured disc.

The proposition from the papovXKos

also describes a machine consisting of a

series of cogwheels, started by a screw.

The case supposed is that a power of

five talents is to move a weight of

1000. In Pappus viii. 10 (Hultsch

p. 1061) the power is four talents, the

weight 160, and the wheels are of a

less diameter. Vincent, who is later

than Martin, thinks that there was no

Heron of Constantinople at all, but

that some writer produced a geodesy,

founded on the Dioptra, which he

called “a Heron”, as we might say

“an Euclid”. He also remarks that

Heron (p. 163, n.) is not a Greek

name but in Egyptian “porte une

signification qui revient a celle d’in-

g^nieur ”.
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Euclid, mentioned by Proclus. It exists probably in Arabic at

Leyden. (13) Merpifcd mentioned by Eutocius, at tbe end of

his commentary on the Measurement of the Circle, as an

authority on the extraction of square roots. Parts of this work

were (a) rd irpo r?)? dpt6pLr)TLK^<^ (TTOL')(^6LU)(Te(o<; (lost), (6) rd

irpo rij? y6copb6TpLKd<^ aTOL')(^£L(D(7ecc)^, which is also lost, but

portions of which have been preserved in the opoL, (c) elaa^co-

yal rdov ryeccfpuerpovpihcov, parts of which are preserved in the

yecopberpovpLeva, jecodataLa, or ryecopuerpLa, irepl puerpcov or orepeo-

p,€TpLfcd, and <ye7]iTOVCKov ^l^XIov, (d) elcraycoyal roop arepeo-

puerpovpLevwv of which fragments are contained in a work of

the same title and also in the last two books mentioned under

(c). All these fragments are extant in MS. at Paris and most

of them contain tabular statements, made at different dates but

all later than our era, of weights and measures. These abridge-

ments and compilations seem to have passed through more

than one hand and were made at different dates. The yeT^irovL-

Kov seems to be as late as the 10th century and to have been

made at Constantinople.

All the works here mentioned which are of mathematical

importance were collected and edited in 1864 by Dr F. Hultsch,

the well-known authority on ancient metrology and mathe-

matics. Hultsch’s volume contains the opoi, or Definitions of

geometrical names, with a table of measures appended, the

yecopberpLa, which begins with similar definitions and measures,

the <y€(oBaio-La, the elcraycoyal rdv o-repeopLerpovpLevcov, Stereo-

metricorum collectio altera, the pierpT^aei^ or irepl pbirpcov, the

yerjTToviKov, which again has similar definitions and measures,

and an extract from the Diopira on the measurement of

triangles \ But no two MSS. contain exactly the same collec-

tion, and the contents of these works shew fully the grounds of

Martin’s opinion upon them. The Heronic formula for the

area of triangles is given in the Dioptra and the Geodesy

:

the

Geodesy is practically the same as a large part of the Geometry

:

the two books on Stereometry contain much repetition of one

^ He adds also Didymi Alexandrini Variae collectiones ex Euclide, Ilerone

Mensurae marmoruni et Ugnomm and etc.
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another, and the Measurements reproduces all the preceding in

a very confused manner. On the other hand, in the Geometry

the area of a pentagon is said to be the square of the side x

and elsewhere^'^ to be the same square x f and there are

other similar discrepancies which point, at the very least, to

two editions of the original, if not to gross interpolations and

unauthentic additions. The probability is, as Martin suggests,

that all these fragments formed part of one comprehensive

w^ork on all the knowledge necessary for land-surveying, from

which subsequent compilers took, correctly and incorrectly, such

matter as they required for their immediate purpose. These

extracts in passing from hand to hand, were annotated by many
generations of surveyors and thus contradictory statements and

extracts from such a late writer as Patricius and references to

Roman measures^ became incorporated in the text.

145. The character of the contents of the Heronic collec-

tion may be indicated in a very few lines. The opoi contains

128 definitions of all manner of geometrical terms, followed

by a short table of measures. The Geometry begins with a

few definitions, followed by an account of the empirical origin

of the science, then more definitions, then measures, and passes

finally to the solution of problems to find the areas or some

linear measurements of triangles, circles, parallelograms and

polygons, of which the necessary linear measures or areas are

given^. The Geodesy, a short extract, begins in the same way

1 “Elsewhere” is ep aXXy rod

"Hpwpos, not named, Geom. c. 102,

p. 134 (Hultsch). A similar alternative

is given on the same page for the

hexagon. So on p. 115 the value tt

=

^i^-

is attributed to Euclid, on p. 136 to

Archimedes, and this value is generally

used, but in the Measurements tt= 3 is

alone used. So, again, although Heron

is cited by Eutocius as an authority on

square-roots, in the extant works the

roughest approximations are contin-

ually used.

^ E.g. o^yyla = uncia

:

so <povppos=
furnus is mentioned.

^ E.g. chap. XV. §87 is IIe/54 kukXwp.

(1) “Let there be a circle with circum-

ference 22, diameter 7 crxotJ'^a. To

find its area {ep^padov). Do as follows.

7x22=154andi|A= 38|. That is the

area.” (2) An alternative method,

(|x-^) is then added. Then (3) “If

you wish to find the area from the

circumference only, do as follows.

(22)2x 7 = 3388and^||^=38|.” Then

(4) to find the area from the diameter

only. (5) The same according to Euclid.

(6) To find the circumference from the

diameter etc. All these examples are

applied to circles of various given cir-

cumferences, diameters, or areas.

Heron then treats similarly of semi-
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but deals only with the areas of given triangles. The Stereo-

metry I. has no definitions but plunges at once into problems to

find the volume of given spheres, cubes, obelisks, pyramids and

similar figures and next the contents of cups, theatres, dining-

rooms, baths, etc. The Stereometry ii. is chiefly concerned with

the same matter as the last part of the preceding book, but in

c. 31 (p. 180) suddenl}^ the method of finding heights by

measuring shadows is inserted. The Measurements and Gee-

ponicus are a miscellaneous collection of problems similar to or

identical with those in the preceding books.

The reader will see at once that Heron is chiefly engaged in

arithmetical calculations which depend on geometrical formulae,

which for the most part he does not, and has no occasion to,

prove. Sometimes, however, he actually works out a geometri-

cal theorem. Thus, in the he happens to suggest

a method of increasing threefold the power of a catapult. This

requires that a certain cylinder should be trebled and, as

cylinders are to one another as the cubes of their diameters, we
are face to face with a problem of triplication of the cube.

Upon this. Heron inserts a solution of the duplication-prohlem,

which is identical with that attributed above to Apollonius.

In the last chapter of the Geodesy (p. 151), he gives a general

formula for finding the area of a triangle. The sides being

a, b, c, he says the area is

a-f6 + c a-{-b — c a

2 * 2

5-i-c b + c — a

2 • 2

But he works out the proof in the Dioptra'^. It is as follows.

circles, and segments greater or less

than a semicircle. On p. 133 occurs

the problem, “Given in one number
the diameter and the circumference

and the area of a circle, to find each. ”

This of course leads to a quadratic

equation, of which the solution was
given above p. 106.

^ Vett. Math. p. 142. The same
proof is given by Pappus (iii. p. 63)

and Eutocius (in Torelli, p. 136). The
latter says it occurs in the firixavi-Kai

eiaaycjyal as well as ^eXoTouKd.

2 Reprinted by Hultsch (pp. 235

—

237) who thinks it is interpolated in

the Dioptra. The formula, together

with Heron’s example of its application

to a triangle whose sides are 13, 14, 15

(and therefore its area 84), was stolen

bodily by Brahmegupta. See Cole-

brooke pp. 295 sqq. and comments by

Vincent op. cit. pp. 200—293, Chasles

Apergu, Note xii. pp. 429 sqq. Cantor

pp. 550 sqq.
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‘ Let a^y be the given triangle. Inscribe in it the circle

having its centre 77. Join tjt., rjy, tjS, Tje, r}^. (Comp. Eucl

a

IV. 4). The rectangle . rje is double of the triangle ^rjy, and

ajS.rjB of arjff, and ay.Tj^ of ayrj. Therefore the rectangle

under Tje and the perimeter of a/Sy is double the area of a/Sy,

Produce yjS to 6 . Make Pd = ah. Then 6y is half the peri-

meter. Therefore the rectangle 6y . erj is equal to the area of

the triangle a^y.

Draw 7]\ at right angles to 777, and /3X to ^y and join y\.

Then, the angles 777X, y^X being two right angles, the quadri-

lateral yrj^X is in a circle. Therefore the angles 777^8, yX^ are

equal to two right angles and also equal to the angles 777/3, arjh,

which also = two right angles (since the angles at 77 were

bisected by arj, (Brj, 777). Therefore the angle a7]B = angle

yX/S, and the triangles oltjS, y^X are similar. Therefore

^y : j3X :: : Si] :: ^/3 : 776, and permutando {ivaXXd^)

fiy : 139 :: jSX : 776 :: /9/c : /c€, and componendo {avvOevn)

y6 : OjS :: : €K, and yO^ : y6 . 9/3 :: ^e.ey : ey.eK (or rje^).

Therefore yO'^ x 776^ = 7^ . ^/3 x . ey. But y9 .Tje, which is

equal to the area of the triangle, is the square-root {'irXevpd) of
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7^^ X Therefore the area of the triangle is the square-root

of 7^ . . X . €<y. Each of these factors is given, for ^6 — half

the periphery : OP is half the periphery minus <ye the same

half minus a/S, 6/3 the same half mmus ay. Therefore the area

of the triangle is given.” A triangle with sides 13, 14, 15 is

selected as an illustration. Its area v x 6 x 7 x 8 = 84.

But, though Heron’s ability is sufficiently indicated by these

proofs, as a general rule he confines himself merely to giving

directions and formulae. From these also it is easy to perceive

how readily he availed himself of the highest mathematics of

his time^ Thus in the Dioptra, two chapters treat of the mode

of drawing a plan of an irregular field and of restoring, from a

plan, the boundaries of a field in which only a few landmarks

remain. The method, in the former case is to draw a rectangle,

three corners of which lie on three sides of the field. In the

remaining spaces perpendicular co-ordinates are drawn to the

sides of the rectangle and are measured oflf. The method is

closely similar to the use of latitude and longitude introduced

by Hipparchus. So, again, in three different places^ Heron

gives, for finding the area of a regular polygon from the square

of its side, formulae which imply a knowledge of trigono-

metry. Suppose to be the area of a regular polygon of

which is a side, and let be the coefficient by which aj is

to be multiplied in order to produce the equation F^ —

then it is easy to see that c ^ t cot . If we reckon the"4 n

consecutive values of c to six decimal places, and give the

1 This sentence is introduced earlier

in the original. It will be seen that,

though the expressions are geometrical,

they are intended to indicate the alge-

braical rule that xy is No
classical Greek geometer would have

dared to multiply a square by a square.

In his view this would have produced

a figure of four dimensions, which

would have been absurd. Pappus

(p. 680 of Hultsch’s ed.) expressly

protests against the practice, which,

he says, had come into use before his

time.

2 The following remarks are taken

from Chaps. 18 and 19, pp. 313—343,

of Cantor, who has made the ancient

surveyors and Heron in particular a

favourite study. Much more will be

found in his pages than can be here

given. See also his Edmische Agri-

mensoren, Leipzig, 1875.

^ Geom. 102, Mens. 51—53, Geepon.

75—77. Hultsch pp. 134, 206, 218,

229. This repetition shews the au-

thenticity of the formulae.
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Heronic formula first in its original form and then in decimals,

we find according to Heron,

Cjj = = 0 433,333 for the correct 0*433,01 2.

c, = 1 =1-000,000 1-000,000.

= y = 1-714,285 (or | = 1-606,666) 1-720,477.

= 1-3 = 2-600,000 2-598,176.

= 5_i = 6-375,000 (or 3/= 6-333,333) 6-181,824.

4_5 = 11-250,000 11-196,152.

This table shews that his approximations are generally near

enough. We need not be surprised that Heron could perform

such calculations. We know that Hipparchus made a table of

chords, that is to say, that the coefficients were known,

with the aid of which = k^r, where r is the radius. Then

7^ / 4
~

4 V Heron was competent to extract such

square roots. But Heron does not use the sexagesimal fractions,

and it is clear, from this as from all other evidence, that sexa-

gesimal fractions were always, as they were afterwards called,

astronomical fractions
;

indeed, save by Heron, trigonometry

w^as generally conceived to be a chapter of astronomy and was

not used for the calculation of terrestrial triangles'.

Some passages of Heron contain noticeable errors. Thus

in Oeeponicus (146—164, pp. 225—228) he gives a rule that

the side of a polygon inscribed in a circle is equal to three

diameters divided by the number of sides, which is true only of

the hexagon, and in Stereometrica T. (35, p. 163) where he

proposes to find the volume of a truncated pyramid on a tri-

angular base, he gives dimensions for the upper and lower

triangles which could not be found in similar triangles at alP.

146 . Enough perhaps has been said to shew that Heron

was by no means a geometer of the Euclidean School. He is a

practical man who will use any means to attain his end and is

altogether untrammelled by the classical restrictions. He is

also a mechanician who, unlike Archimedes, is clearly proud of

^ Cantor pp. 335, 336 abridged. ^ Cantor pp. 337, 338 shews that

There is, in truth, no evidence to shew the first error is probably not Heron’s,

how Heron came by his formulae. The second is a mere slip.
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his own ingenuity. He adds nothing, or almost nothing, to the

geometry of his time but he is learned in the ordinary book-

work. On the other hand, as was mentioned above (p. 106) he

is the first Greek writer who uses a geometrical nomenclature

and symbolism, without the geometrical limitations, for algebrai-

cal purposes, who adds lines to areas and multiplies squares by

squares and finds numerical roots for quadratic equations.

Hence, for a similar reason to that which led Prof, de Morgan

to suspect that Diophantus was not a Greek, it is now commonly

believed that Heron was an Egyptian. His name, if it is Greek

at all, is found only at a late era and belongs to persons of

Egyptian or Oriental birth. Further, the whole style of his

work recalls the book of Ahmes which has been described

earlier in these pages. His directions are introduced by the

same form of words, 'Trotet ovray^, ‘'Do as follows”. Like Ahmes,

he gives few general rules, but a large collection of similar

examples. As Ahmes called the top-line of a figure Merit, so

Heron calls it KGpv<j>Tq, vertex^. The isosceles parallel-trapezium

was a favorite figure of Ahmes : so it is of Heron^ Heron’s

method of drawing a plan seems to have had its forerunner in

the method of Ahmes ^ Ahmes gives tables of measures, so

does Heron. Lastly Heron treats equations in precisely the

style of Ahmes. “ It will be remembered that the Aai^-problem

of Ahmes, no. 28, was literally added, -i deducted, remainder

10’, which was explained as meaning {x ^ x) — ^ {x + ^ x) = 10.

Compare with this the problem of Heron. ‘ Given a segment

of a circle, with base 40 feet, height 10 feet : to find its circum-

ference. Do as follows. Add base and height together. The

total is 50 feet. Take away a quarter. It is 12|. Remainder

37J. Add a quarter. It is 9J J.
The total is 46^ JJ. This

is the measure of the circumference. We added \ and sub-

tracted J, because the height is ^ of the baseV” The style

here and the form of the fractions recall exactly the old

1 Geometria S{pA4:). Other similari- ^ The examples of Ahmes are muti-

ties of nomenclature in Cantor, p. 331. lated. See above p. 127.

2 Nine chapters of the Geometry are ^ Heron, pp. 199, 200, Cantor p.

devoted to it (pp. 103—108). 332.
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Egyptian. Such evidence as this goes a long way to confirm

the suspicion not only that Heron was an Egyptian, but also

that algebra was an Egyptian art and that the symbolism of

Diophantus was of Egyptian origin. But it is obvious also that,

if Heron was not a Greek, he relied almost entirely on Greek

learning and did not resort to the stores of priestly tradition of

which the contemporary Edfu inscriptions shew the miserable

character. He is a man who writes in Greek upon Greek

subjects, but who thinks in Egyptian

\

1 Let it be remembered that the

seg't-calculation of Ahmes leads to tri-

gonometry: his Ziau-calculation to alge-

bra. Almost the first sign of both ap-

pears in Heron, whom there are other

reasons for thinking to have been an

Egyptian. An algebraic symbolism

first appears in Diophantus, but the

symbols are probably not Greek and

probably are Egyptian. Both Heron

and Diophantus were Alexandrians.

This is all the evidence that trigono-

metry and algebra were of Egyptian

origin, but does it not raise a shrewd

suspicion? Proclus {p. 429) speaks of

oi irepi '"Eptava, as if Heron founded a

school.



CHAPTER IX.

FROM GEMINTJS TO PTOLEMY (b.C. 70—A.D. 150).

14:7. If the materials for a history of Greek geometry in

the second century B. C. are scanty, they become still more so

for the next 250 years. Only a few works, and those not of a

very valuable character, survive from this period.

About 70 B.C. lived G-eminus of Rhodes^ who seems to have

been the freedman of a wealthy Roman and who wrote, beside

the astronomical work elcraycoyy eh ra ^aivofieva, still extant^,

a book on the Arrangement of Mathematics, irepl t^9 twv gaOr)-

fMarcov rdfeft)?, which, without being expressly historical, con-

1 Proclus always writes Te/uvos. Sui-

das has Te/nbios, ovofxa Kipiov. In the 6th

chapter of his Phaenomena Geminus

says “The Greeks suppose the feast of

Isis to fall on the shortest day. So it

did once, 120 years ago, but every four

years the incidence is shifted a day

and is now a month behind.” If the

feast of Isis here mentioned could be

exactly identified, there would be no

difficulty in finding the date of Ge-

minus, But there are two dates in

the Egyptian calendar (the 1st and

17th of Athyr) on both of which some

sort of feast to Isis seems to have been

held and calculations founded on both

these give 77 B.c.andl37 b.c. as the dates

of Geminus. Cantor (pp. 344—6) gives

excellent reasons for preferring the

former, the chief of which is that

Geminus edited an extract from

yr](ris ixeTeiopoXoytKwv of Posidonius, who
can hardly be other than Cicero’s

teacher and Pompey’s friend.

2 It is printed in Halma’s edition

of Ptolemy’s Canon, Paris, 1819. A
very full abstract in Delambre Astr.

Anc. I. c. XI. pp. 190—213. It is not

like Euclid’s Phaenomena, a geometrical

treatise, illustrative of astronomical

theory, but is an account of astronomi-

cal observations and of the theories by

which they are explained.
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tained abundant notices of the early history of Greek mathe-

matics and from which Proclus and Eutocius^ derived much
of their most correct and valuable information on that subject.

A book of this kind, written not long after the classical age by

a competent geometer, would, if preserved, have cleared up a

hundred difficulties which do not now admit of solution.

148. Probably near to the time of Geminus lived Theo-
dosius (? of Tripolis), who is mentioned by Strabo and Vitruvius

and must therefore be a pre-Christian writer, though Suidas

attributes to him a commentary on one Theudas of Trajan’s

time I He is the author of Sphaerica, a very complete treatise

on the geometry of the sphere, in three books'^ It was remarked

above, however, on the subject of Euclid’s Pkaenomena, that

both that and the treatise of Theodosius are evidently founded

on some earlier work on Spherics, perhaps by Eudoxus. The

work of Theodosius contains no trigonometry {p, spherical triangle

is not mentioned) and there is nothing particularly interesting

either in his style or in his discoveries, if indeed he made any.

The character of his propositions will be sufficiently indicated

b}^ the following enunciations. I. 13, “If in a sphere a great

circle cut another circle at right angles, it bisects it and passes

through its poles.” (i. 14, 15 are the converse of this.) ii. 22,

“ If in a sphere a great circle touch another (second) circle and

cut a third which is parallel to the second and lies between it

and the centre, and if the pole of the great circle lies between

the two parallel circles, then any great circles which touch the

third will be inclined to the (first) great circle, and that will be

1 Eutocius in Apoll. Gonica, p. 9,

calls the book fiadrjixdTiap deupLa. The

title ra^ts is quoted by Pappus viii.

3 (p. 1026 Hultsch). Proclus quotes

the book sixteen times, especially on

curves.

2 Vitruvius (ix. 9) mentions a Theo-

dosius who invented an universal sun-

dial. Strabo (xii. 4, 9) mentions a

mathematician Theodosius, but calls

him a Bithynian, whereas Tripolis was

on the Phoenician coast. Suidas (s.v.)

expressly says that the author of the

Sphaerica was a native of Tripolis but

gives also another Theodosius of the

same place, a poet. Probably Vitruvius

refers to our Theodosius. Vitruvius

and Strabo both lived under Augustus

and earlier.

3

This has been often printed. First

in 1558 by Pena at Paris: in 1675 by

Isaac Barrow, London: in 1852 at

Berlin by Nizze with Latin trans. and

an appendix of Arabic variant proofs.

The figures are not given with the

text.
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at the greatest inclination (opdoraro^) which touches the third

at the point of bisection of its greater segment, and that will be

at least inclination {Ta7r6Lv6raTo<;) which touches it at the

bisection of its lesser segment, etc.h

Strabo, also, (xii. 3) mentions Dionysodorus, a native of

Amisus in Pontus, who seems to be the mathematician who, like

Diodes, attempted to finish the problem (Sph. et Cyl. ii. 5),
‘ to

cut a sphere so that its segments shall be in a given ratio’, which

Archimedes had left incomplete. But Eutocius (Torelli p. 163,

169) complains of both that they did not fill up the gap in Archi-

medes’ solution but produced entirely different proofs of their own.

149. Serenus of Antissa, in Lesbos, lived after Christ.

Bretschneider, indeed, who pointed out (pp. 183—184) that

Antissa was destroyed by the Homans B.c. 167^ was inclined to

place Serenus about 200 B.c., but the name Serenus is Roman
and the town Antissa was restored in Strabo’s time®, so it is

probable that Serenus lived under the Roman regime^. He is

not mentioned, however, by any writer earlier than Marinus,

the pupil of Proclus (A.D. 500), and author of the preface to

Euclid’s Data. His w^ork, however, does not seem to be very

late and he may be placed here in default of better authority.

He is the author of two treatises, one on the Section of the

Cylinder in 35 propositions, the other on the Section of the

Gone in 63, both of which are printed as an appendix to Halley’s

edition of Apollonius. The treatise on the Cone, which is

addressed to one Cyrus, deals entirely with the triangular

section. E.g. Props. 5 and 6 are “ If a right cone be cut by

planes through the vertex and the axis be not less than the

radius of the base, then the triangle through the axis is the

greatest of the triangles so produced”. Prop. 21, “To cut a

1

Theodosius was also the author

of an extant astronomical treatise Trepl

rpxepCov Kal pvktQv and another irepl

olKTfjcrewv, in the style of Euclid’s

Phaenomena. The enunciations of

these were published by Dasypodius

(1572 Strasburg) along with the work

of Autolycus (Delambre i. pp. 234

—

241). It is curious that both Geminus

G. G. M.

and Theodosius seem to have been

ignorant even of the observations of

Hipparchus. There are a few lines on

both these mathematicians in Chasles

Apergu, p. 25.

2 Livy, XLV. 31.

3 Strabo, xm. 2.

^ Cantor, p. 347, Blass in Fleckeisen’s

Ne^ie Jahrb. 1872, p. 34.

19
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scalene cone through the vertex so that the section shall be an

isosceles triangle”. Prop. 22, “Such isosceles triangle is the

greatest of the triangular sections of the scalene cone : the least

is that which is produced by a plane perpendicular to the base”.

From this point onwards the book deals almost entirely with

maxima and minima. The treatise on the Cylinder, which is

addressed to the same friend Cyrus, deals with all the sections,

but chiefly the elliptical. Prop. 19 shews that the same ellipse

can be produced by sections of a cone and a cylinder. Props,

21 and 22 are “ Given a cone (cylinder) and an ellipse in it, to

find the cylinder (cone) of which the same ellipse is a section”.

Props. 22 and 23 are “ Given a cone (cylinder), to find a

cylinder (cone), such that the section of both by the same plane

produces the same ellipse”. Prop. 31 is “The straight lines

which are drawn from the same point to touch a cylinder have

their points of contact on the sides of a parallelogram”. Prop.

33 is important as being the foundation of the modern theory

of harmonics. It is as follows :

a

If from the point S, outside the triangle ajSy, the straight

line be drawn cutting the triangle in e, f, and the point y

be taken so that Be :S^= ey : y^, and \y be joined and produced

to meet the base, any other transversal BKXfi shall be so divided

by ay produced that B/c : B/ji = /c\ : Xfx. With the aid of this it

is proved (Prop. 34) that all straight lines drawn from the same

point to touch a cone, have their points of contact on the sides

of a triangle. Then comes the last proposition (35 which is

similar in kind to Prop. 32). It is as follows. ABC is a triangle,

BEy FG are parallel to its base. From a point Hy not in the

plane of the triangle draw HD, HEy HF, HG and produce them
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to meet a plane KLXMN, which is at all points equidistant

from ABC. The plane HDKE will cut

this second plane in KN, and the plane

HFLQ will cut it in LM, and KN, LM
are parallel to DE, EG. Also KL, DF
are parallel and MN, GE. Therefore KL,

NM produced will meet. Let them meet

in X. Then the triangles XKN, ABC are

similar. Now if th e pointH be supposed

to be an illuminating point and the tri-

angle ABC (whether se or in a cone)

be opposite its rays, then the rays will

make the shadowKN

X

triangular and similar to ABC. Although

this consideration belongs to optics and on that account is

alien to our subject, yet it is clear that without the proofs here

given concerning the cone and the cylinder, I mean about the

ellipse and its tangents, it is impossible to solve a problem of

this kind : wherefore not carelessly but on purpose the subject

has here been introduced

A lemma of Serenus, on angles which stand on equal arcs

of a circle, is preserved in the Astronomy of Theon Smyrnseus^,

but there is no evidence to shew how it came there. Theon

lived about 130 A.D. and may have himself used Serenus.

150. One date in the life of Menelaus is absolutely certain.

Ptolemy^ records two astronomical observations made by him

in the first year of Trajan, A.D. 98. He was the author of a lost

work on the calculation of chords, but his Sphaerica in 3 books,

though not extant in Greek, is extant in Arabic and Hebrew^

and has been often translated into Latin^ This is a treatise

on spherical triangles, describing their properties in much the

same way as Euclid, in Book i. of the Elements, treats plane

1 On the question raised by this

proposition, whether the ancients were

acquainted with the method of per-

spective, see Taylor Anc. & Mod.

Conics, p. Iv. See also Chasles Apergu

pp. 47, 48, 74.

2 Martin’s Ed. p. 340.

3 Almagest ed. Halma vii. 3. Vol. ii.

pp. 25, 27.

^ Halley made a translation which

was published by O. Costard, Oxford,

1758. Costard promises a preface,

but this is wanting from both copies

in the Brit. Mus. There is a full

summary, as usual, in Delambre i.

pp, 244—246.

19—2
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triangles. But there is no attempt at solution of the triangles,

and though in Book in. the first proposition is the foundation

of the ancient method of solution, Menelaus makes no such

use of it. His propositions are of the following kind. In every

spherical triangle any two sides are greater than the third (i. 5)

:

the sum of the three angles is greater than two right angles (i. 11)

:

equal sides subtend equal angles and the greatest side the greatest

angle (i. 8, 9) : the arcs which bisect the angles meet in a point

(ill. 9) : the arc which bisects any angle cuts the opposite side

into two segments, such that the chords of twice the segments^

are to one another as the chords of twice the other sides (ill. 6).

The chief proposition (lii. 1) describes two properties of plane and

spherical triangles, cut by a transversal. The property of plane

triangles (stated in a lemma) is that if the three sides be cut

by a straight line, the product of three segments which have no

common extremity is equal to the product of the other three^

For spherical triangles, the rule is similar, but for “three

segments” read “the chords of three segments doubled”. “The

proposition in plane geometry ” says Chasles “ of which we shall

speak below in the article on Ptolemy (because it is in the

Almagest that it has generally been noticed) has acquired a

new and great importance in recent geometry, where the illus-

trious Carnot has introduced it, making it the base of his theory

of transversals^.” The theorem on spherical triangles was greatly

admired by the Arabs, who called it “ the rule of intersection ”

:

early mediaeval writers called it by its Arabic name catha, and

it was known later by another name, regula sex quantitatiim'^.

Pappus (IV. p. 270) says that Menelaus, and also two otherwise

unknown geometers, Demetrius of Alexandria and Philon of

Tyana, investigated curves on curved surfaces. One of these was

called irapdho^o^ rypag/jug, but Pappus does not describe it.

151 . Practically all that we know of the trigonometry of

1 Halley always translates “chord

of twice the arc” by sinus^ which of

course properly is half the same chord.

2 Menelaus does not say “product”:

he says that % has to the ratio

compounded of and 63 : a^.

2 Aperc^v, pp, 25—27.

^ This name is in Stifel’s Aritlim.

Integra. Nuremberg, 1544. The names
of the proposition are given in Costard’s

edition p. 82. A complete account of

its history is in Chasles Apergu, Note

VI. pp. 291—293. Chasles thinks it

was originally one of Euclid’s porisms.
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the Greeks, is derived from two chapters of the famous MejaXy

^vvra^L^^ of Claudius Ptolemaeus. This work contains many as-

tronomical observations by Ptolemy himself, of which the earliest

was made in A.D. 125, the latest in A.D. 151. Beyond these facts

and also that Ptolemy certainly observed in Alexandria in

A.D. 139, we know nothing of his history. The Arabs indeed

have many details upon his personal appearance, etc., but these

statements betray the romancer by their minuteness*'^. The

common name /jueyaXy Swraft? was altered by still more

fervent admirers into ixeyicrTr) and this word was adopted by

the Arabs who got translations of the book earlier probably

than of any other Greek mathematical work. The Arabic article

was then added and the name corrupted into AlmidscMsti,

Avhence is derived its common mediaeval title Almagest^.

Book I. chap. ix. of the Almagest, shews how to calculate a

table of chords ^ The circle is divided into 360 degrees

fiara) each of which is halved: its diameter into 120 degrees

each of which is divided into 60 minutes, 8600 seconds (jrpwTa

i^rjKoard, Bevrepa ePTjKoa-rd). Ptolemy does not pretend that

these divisions were new. The division of ’the circle was, among

Greeks, as old as Hypsicles and was of Babylonian origin : the

sexagesimal scale of the division of the diameter shews it also

to have been Babylonian, and, as such, it was no doubt known
at least to Hipparchus, though it is not now to be found before

Ptolemy®. But Ptolemy’s method of calculating chords seems to

^ Ptolemy’s title is ixadrjfxaTiKri Sui'-

ra^is.

2 Boncompagni’s Gherardo Cremo-

nese, pp. 16, 17 (cited by Cantor, p.

351) Weidler Hist. Astr. p. 177. The

Arabs say that Ptolemy was a fair

man, with a red mole on the right

side of his chin, etc.

3 The whole of Delambre’s second

volume is devoted to Ptolemy. There

is a splendid article on him by Prof,

de Morgan in Smith’s Die. of Gr. and

Horn. Biogr., and a neat summary of

the Almagest in Wolf’s Gesch. der

Astronomic, Munich, 1S77. The great

edition is the Abbe Halma’s, Paris,

1813—16.
4 The chapter is introduced thus

early for the purpose of measuring the

arc of the solstitial colure which lies

between the poles of the equator and

the ecliptic. Our names “minutes”

and “seconds” are taken from the

Latin “ partes minutae (primae) ”,

“partes minutae secundae”.

5 Ptolemy says merely “I shall use

the method of arithmetic with the

sexagesimal scale, because of the in-

convenience of fractions” (Halma, p.

26).
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be his own. The measures of the sides of regular polygons,

as chords of certain arcs, were known in terms of the diameter.

Some of these Ptolemy first sets out. He next proves the

proposition, now appended to Euclid VI. (D), that “ the rect-

angle contained by the diagonals of a quadrilateral inscribed in

a circle is equal to both the rectangles contained by its opposite

sides^”, and then proceeds to shew how from the chords of two

arcs that of their sum and difference and how from the chord of

any arc that of its half may be found. His proofs which are

very pretty are as follows^

:

(1) Given the chords it is required to find

Draw the diameter aS and join 78, Then 78 = Jl20‘^ - a7^

/38 = and a7 . /58 = /57 . a8 + a/3
.
78. Therefore

07 = 120/37 + J\W— whence can be

found.

(2) Given the chord /S7, it is re-

quired to find the chord 78 of half

the same arc. Draw the diameter

ay and join a^, a 8, y88. In ay take

ae = ayQ. Join 8e and draw 8f per-

pendicular to ay. The triangles a/38,

a^e are equal, and their sides y88, he are equal. But /38 = 87,

therefore the triangles 8ef, 8^7 are equal. Therefore

y _ €7 _ a7 — ae _ 120 —
b7 ~ ^ — 2 ”

2
60 -yi 20''-;S7l

1 Chasles A;p. p. 27 note i. says that

Carnot in his Geometric de Position

shewed that all rectilineal trigonometry

could be deduced from this theorem.

2 Halma, pp. 30—35. The proofs

in the text are abridged after Cantor

(pp. 352—354) with some corrections.
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But the triangles 7^8, yotS are similar, therefore ^7 : 78 :: 78 : ay,

whence 78^ = ay . ^y = 120 (60 - is/l20‘" - fiy'). From this 78

can be found.

(3) Given the chords a^, jSy, it is

required to find the chord ay. Draw
the diameters a 8, /^e and join /88, 87,

76, 8e. The triangles a^/S, 8^6 are

equal and a/S = e8. Then the diagonals

/3S
.
ye = jSy . Se + yB . /Be, or

Vl20^-a^‘^ X \/120^-/37"

= yS7 . a/3 -f 120 Vl20"-a7‘^

whence ay can be found.

Returning then to the known chords (or sides of polygons),

Ptolemy finds from the chords of 72® and 60® the chord of 12®.

From this the chord of 6®, 3®, IJ®, |®. His intention, however,

is to give a table of the chords of arcs, increasing successively

by ^®. He requires therefore to find the chord of 1®. This he

effects in the following manner.

(4) a/3, ^y are given arcs, of which

^y is the greater. Draw their chords

and also the chord ay. Bisect the angle

at /S by /38 cutting ay in e. Join a 8, By

and draw 8f perpendicular to ay. From

centre 8, with radius 86, describe a

circle, cutting 8a, 8f in tj, 6 respec-

tively. Then (angle a^y being bisected)

a^ : /By :: ae : ey, therefore ae < ey, i.e.

Q[ry

ae < ^ and e falls between a and Therefore 8a>8e>8f,

whence it is plain that rj lies on 8a, 6 on 8f produced. Then
sector Ber] < triangle Bea, and sector Bed > triangle 8ef. There-

fore
tri. 86^ ^ sec. Bed tri. Be^ tri. Be^

sec. BeT] sec. Berj
and

sec. Ber] ^ tri. 86a
*

tri. Be^ sec. Bed

tri. Bea sec. Berj ’

Therefore — <
6a arc. ey

Therefore

— ana —
tri. Bex ex sec. Bey arc. ey'

Add unity to each side and then

But 5!iiA^=^and
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double them. It follows
,

0f7 2 arc 716
that — < —

,

ex arc erj

ey arc 6
from each side and it follows that — <

ex

Deduct unity

+ arc 07]
But

arc e7)

ey^l3y arc ge + arc ^ ajrgle^
^^ex a/d arc e7} angle /3oa arc px

say, the quotient of the greater chord by the less is smaller than

the quotient of the greater arc by the less. Now take the

chords of li”, 1° and and we find that
chord 1" arc 1*

chord arc I®

and

chord ^ arc

chord ^ arc 1"
But

arc 1“

arc 30

, arc li"
;v and :r Q-
^ arc 1® f.

There-

fore I chord ly < chord 1® < f chord f®. From this is obtained

the approximation chord 1® = 1 .
2'

.
50". The chord 1

J® is

known and hence also the chord J®, and the table of all chords,

rising by half a degree at a time, can be compiled. Ptolemy

goes only as far as 180®, on the ground only that he never

requires arcs of greater magnitude. For ares which lie between

any two given in the table, Ptolemy applies merely a proportion.

For instance, the arc 20® has a chord 20 .
50'

. 16", the arc 20^®,

has a chord 21.21'. 12". The addition of half a degree to the

arc corresponds to an addition of 30' 56" to the chord. This

increase, divided by 80, is 1' 1" 52'" and this is taken to be the

increase in the chord for every increase of a minute in the arc

between 20® and 20® 30' \

Chapter X., which foliows^, is on the obliquity of the ecliptic

as determined by observation. The next, XL, Xll. contain

spherical geometry and trigonometry “ enough for the determin-

ation of the connexion between the sun’s right ascension,

declination and longitude and for the formation of a table of

declinations to each degree of longitude Chap. XI. contains

TrpoXa/jblSavofieva, “preliminaries to the spherical demonstra-

^ These proportional increases are

stated in a third column by Ptolemy.

Ideler in Zachs’ Currespondenz, Vol.

XXVI. July, 1812, pp. 3—38, finds that

Ptolemy’s numbers are correct to 5

places of decimals.

2 De Morgan. Ptolemyintroduces the

subject by saying “It follows next to

shew the magnitudes of the arcs, com-

prised between the equator and the

ecliptic, of the great circles drawn

through the poles of the equator”.
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tions”. These begin with the lemma of Menelaus, the regula

sex quantitatum, borrowed without any acknowledgement. After

proving this, he gives four proposi-

tions. If AB, BG be two arcs,

each less than a semicircle a

supposition Avhich can be made of

all arcs to be hereafter taken”) and

A6r be joined and BD be drawn to

the centre D, cutting AO in E,

then the chord of 2AB : chord of 2BG :: AE : EG. From this

it follows that, given the arc A G and the ratios of the chords of

2A 5, 25(t, the arcs AB, BG can be found. Produce GB to

meet DA in F. Then chord ^GA : chord 2AB :: OF : BF.

From this it follows that, given arc GB only and the ratio

between the chords of 20A, 2AB, the arc AB can be found.

These propositions being proved, Ptolemy then proves the regula

sex quantitatum for a spherical triangle, and proceeds (Chap. Xll.)

to find the magnitudes of the arcs above-mentioned, and

(Chap. XIII.) “ the magnitudes of arcs of the equator which lie

between circles which pass through its poles and through given

points of the ecliptic”. The method, in both cases, is founded on

the rule of Menelaus.

ABGD represents a great circle, passing through the poles

of the equator A G. BED is the eclip-

tic : E is the vernal equinox
;
B the

winter, and D the summer, solstice.

Z is the pole of the equator. On the

ecliptic take an arc HE, and through

H describe the great circle ZHT. It

is required to find the magnitudes of

HT (Chap. XII.) and TE (Chap. xiii.).

Ptolemy gives the solutions only for

cases in which EH is 30" or 60", and then adds tables. The lemma
of Menelaus is, later on, applied in a great many ways to this

same figure, for there are four triangles, EHT, ZHB, ZTA, EBA,
which are cut by the following transversals respectively, ZBA,
ETA, BHE, ZHT. One example (ch. xii.) will serve for an illus-

tration. ETA is a transversal to the triangle ZHB. Therefore
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chord ZAZ : chord 2AB :: chord 2TZ x chord 2HE : chord

2TH X chord 2EB. HE is ex hypothesi 30". Arc ZA is 90",

i.e. chord 2ZA = 12{) . 2 arc A5 is 47" 42' 40", its chord 48. 81'. 55".

2 arc HE is 60", its chord 60. 2 arc EB is 180", its chord 120.

“If from the ratio 120 : 48 .
81'

.
55" we subtract {ac^eXwfjuev)

that of 60 : 120, the remainder will * be the ratio chord

. 2TZ : chord 2TH, i.e. 120 : 24 .
15' 57". But 2TZ= 180", its

chord 120. Therefore chord 2T^=24.15' 57", its arc is

23" 9' 59" therefore the arc TH is half this, viz. 11' 40" very

nearly

This paragraph contains in fact the whole of Greek trigono-

metry. The further progress of this department of geometry

is due mainly to the Indians and after them to the Arabians.

With the former, trigonometry seems, after its suggestion in

Ptolemy, to have had quite a native development. The Indians

never used “the chord of twice of the arc", as the Greeks always

did, but half that chord. This they called jydrdha or ardhajyd,

but the name of the whole chord jyd or jivd was also used for

shortness. The Arabs, taking the latter term, transliterated it

to dscMba, which later was altered for the Arabic word dschaih,

which is of nearly the same form. Dschaih means ‘ bosom ’ and

was therefore translated ‘ sinus ’ by Plato of Tivoli in his Latin

version ('De Motu Stellarum’) of the astronomy of Albategniusl

1 Delambre (in Halma) has some

notes on the proof,

chord 2ZA _ ch. 2TZ ch. 2HE
chord 2AB

~
ch. 2TH ’

ch. 2EB
ch. 180® _ ch. ISO'’ ch.21ong.

ch. 2 obliq. ch. 2 decl.' ch. 180®
’

ch.2decl*_ ch. 2obliq. ch.21ong.
^

ch. 180® " ch. 180®' • ch. 180“

ch. 2 decl. _ 48 .
31' 55" 60

120 “ 120 ‘ 120

“On voit par la que, dans le langage

des anciens, retrancher une raison,

c’etoit diviser par cette raison.” Han-

kel (p. 285, 286 n.) has a very neat

note on Ptolemy’sprocedure. He points

out the four triangles and their trans-

versals. All the arcs in the figure can

be expressed in terms of HT (a),

BA (a), TE (6), HE {h), and their

complements. The application of

Menelaus’ rule produces the following

equations. The transversal ZBA gives

cos /i= cos a . cos 6 : the transv. ETA
gives sin a= sin a sin h : the transv.

BHE gives cos a . sin 6 . sin a= cos a

. sin a (or tan a= sin b . tan a) : the

transv. ZHT gives sin b . cos /i= cos b

. cos a . sin h (or tan 6 = cos a . tan h).

2 Plato of Tivoli was certainly

writing between a.d. 1116—1136. At

the latter date he was at Barcelona.

Albategnius (878—918) was Mohammed
of Battan in Syria. On these persons

see Cantor, pp. 560, 632, 778, where

also the derivation of sinus is given.

Also Hankel, pp. 217 sqq., 287 sqq.
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In this way, sine came to be a technical term of modern trigono-

metry. Further evidence of the distinct character of Indian

trigonometry is to be seen in their division of the diameter.

Ptolemy divided this into 120 parts with sexagesimal fractions

and so did the Arabs. The Indians divided it in various ways.

Dividing dt into 120,000 parts they calculated the sides of

regular polygons of 3, 4, 5, 6, 7, 8, 9 sides to he 103923, 84853,

70534, 60000, 52055 (for 52066), 45922, 41031 (for 41042)

respectively. Ptolemy (Almag. VI. 7) has tt = 3 .

8'
.
30"

(= 3 + + gfgg = 3T41, 666....) The oldest Indian tradition

makes tt = 3 or, more exactly, VlO. Aryabhatta has This

value was obtained in the following way. If, in a circle with

radius unity, be the side of an inscribed regular polygon

of n sides, that of a like polygon of 2n sides, then

= n/2 — ^4 - SJ. From the side of the hexagon they calcu-

lated the sides of polygons of 12, 24, 48, 96, 192, 384 sides.

The periphery of the last (the diameter being taken = 100) is

V 98694. This square root or rather that of 986,940,000 is

exactly Aryabhatta’s value b

152 . The applications of trigonometry in Book II. of the

Almagest and the geometry of eccentric circles and epicycles in

Book III. belong too distinctly, by language and purpose, to the

history of astronomy to be described here. Besides the Alma-

gest, Ptolemy wrote also many other works, most of which are

extant. The Geography (edited by the Abbe Halma, Paris 1828)

contains a description of the earth, defining the position of many
thousand places by latitude and longitude. Book I., chap. 24 con-

tains directions for drawing a map and various modes of projec-

tion are here discussed. Ptolemy prefers the method by which

I have somewhere seen a statement

that sinus, which in Latin means

primarily ‘a fold,’ was applied to the

‘folded’ chord, i.e. half the chord.

1 Hankel, pp. 215, 216. Pur-

bach (1423—1461) and Regiomontanus

(Miiller of Konigsberg, 1436—1476),

both of whom made abstracts of the

Almagest, but use sines, divided the

radius into 600,000 parts. The latter

afterwards substituted the value r

= 1,000,000 (Montucla i. pp. 539

—

544). In Brigg and Gellibrand’s Tri-

gonometria Britannica (Goudae, 1633)

cap. 2. sines are calculated to 15 places

of decimals. Here also Ptolemy’s

propositions are given exactly.



FROM GEMINIJS TO PTOLEMY.:300

the eye is supposed to he at the pole and points on the earth’s

surface are projected on the plane of the equator \ He wrote

also a Canon or chronological list of kings of various countries

(also ed. Halma), a treatise on Sound (Ap/noviKa, ed. Wallis,

Oxford, 1682) and another on Optics, extant only in a Latin trans-

lation from the Arabic. The 5th book of the Optics deals with

refraction, in which, as an astronomer, Ptolemy was especially

interested ^ Cleomedes an earlier astronomer (a.d. 60) had

already suggested that the reason why stars are still seen, though

below the horizon, was due to the same cause as that which

renders a ring, previously unseen, visible when the vessel, which

contains it, is filled with water. But Ptolemy works up the

subject carefully. He compares rays passing through air and

water, air and glass, and water and glass. He finds as a general

law that a ray, passing from a rarer to a denser medium, is

refracted towards the perpendicular : if passing from a denser to

a rarer medium, away from the perpendicular : and he invented

a simple contrivance (a graduated circle with moveable spokes,

the lower half of which is placed in water) for the purpose of

ascertaining the amount of the refraction in water for various

angles of incidence^ Some works in astrology and metaphysics

probably not genuine, are also attributed to Ptolemy^ but

Proclus (pp. 362—868) has preserved some extracts from a

work of his in pure geometry, from which it appears that he

also discussed the propriety of Euclid’s famous 12th Axiom,

(sometimes printed as 11th), on parallel lines. He endeavoured

to prove it as a theorem in the following way. If the straight

1 Cantor p. 358 says that Aiguillon

in 1613 gave to this method the name
of “stereographic” projection. Modes

of projection are also discussed by

Ptolemy in his Planisphere and Ana-

lemma (trans. Commandinus 1558 and

1562). An analemma is a delineation

on a plane of the circles of the heaven-

ly sphere. See Hultsch’s Pappus, in.

pref. p. xi.

2 Refraction is not mentioned in

the Almagest. Delambre accounts for

this by supposing that the Optics was

written later.

® See Heller, Gesch. der Physik. pp.

136, 137, Delambre ii. pp. 411—431.

De Morgan doubts the authenticity of

the Optics, chiefly on the ground that

the geometry is bad.

^ Simplicius {in. Arist de Ccelo, Book
I.) mentions a book on dimensions {Trepi

dcaardaewif) and Pappus viii, p. 1030

seems to mention a book on Mechanics.

Both are lost.
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line e^7)6 meet the straight lines

al3, yS and make the two interior

angles equal to two right angles,

then a/3, 7^ are parallel. For if

not, let the interior angles j3^y,

be two right-angles and let

the two straight lines, j3^, Sy, meet

in /c. Then, the angles a^y, ^yy,

will also be equal to two right-angles and the straight lines af,

yy will meet in X and thus two straight lines will enclose a

space. Conversely, if the straight lines are parallel, the interior

angles are necessarily equal to two right-angles. For a^ and yy
are not less parallel than 5^, yB and therefore whatever the sum
of the angles ^^y, ^yB, whether greater or less than two right-

angles, such also must be the sum of the angle a^y, ^yB. But

the sum of the four cannot be more than four right-angles,

because they are two pairs of adjacent angles.



CHAPTER X.

Last Yeaes.

153 . The revival of Platonism and Pythagorean mysticism

in Alexandria and the East, perhaps also the dispersion of the

Jews and their introduction to Greek learning, led about

Ptolemy’s time to the revival of the theory of number and this

in the hands of Nicomachus, Theon, Smyrnaeus and others

became a favourite study h No doubt geometry continued to

be one of the most important parts of the Alexandrian course,

but no important geometer appears for 150 years or so after

Ptolemy. The sole occupant of this long gap is Sextus Julius

Africanus, a Libyan by birth, who lived, however, most of his

life in Palestine. He flourished about A.D. 200. Africanus has

left a collection of papers similar to those of Heron, and en-

titled ILeo-ToLy i.e. ‘Patchwork ^miscellanies.’ A portion of this

dealing chiefly with catapults is printed in the Mathematici

Veteres, but Chap. 31 contains some problems of strategy^, to

And the breadth of a river the opposite bank of which is oc-

cupied by the enemy, etc. Two solutions of this problem are

given, both depending on similar triangles. The first is as

follows. The point a being on the opposite bank, take a distance

evidently greater than o.6, 6 being on your own bank and let

be at right angles to the bank. With the dioptra determine

1 Vide supra, p. 88 sqq. cent along with Heron’s Dioptra above

2 This is separately printed by Vin- mentioned.
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^87 at right angles to 6^. From 7 with the dioptra determine

the angle Bisect /3y in 8 and from 3 draw Be parallel

a

to 0j3, meeting ay in e and from e draw ef to ^j3, parallel to j3y.

Then ^(3 is half ajS and can be determined by measurement.

The other method is as follows. The point a being on the opposite

a

bank, determine aj8 crossing the river at right angles and measure

/3y parallel with the banks. At the point 8 on /3y lay a T-square

ySe, so that its extremity e lies on the line ya, as determined by

the dioptra. Then 78 : Be :: yfi : ^a. The first three of these

distances are known and thus /3a is obtained. This procedure,

the Roman varatio, was one of those which made the reputation

of Heron and all the gromatici of antiquity. It could be

applied of course, as Euclid applies it in the Phcenomena, to

finding heights and depths as well as horizontal distances \

1 Chap. 76 of the Kearol describes a

curious system of telegraphy. Three

posts were set up, each bearing 9

moveable arms. One represented units,

the next tens, the third hundreds.

The numbers thus exhibited were read

in Greek alphabetic signs and in this

manner a word was spelt out, e.g. 7 on

the second post (o = 70) and 4 on the

third (i;= 400) would spell ov, ‘No.’

Cantor, pp. 372—374.
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154 .
But the end of the third century produced one of the

greatest of Greek mathematicians, Pappus of Alexandria. His

date, indeed, though he certainly lived before Proclus and

Eutocius who often mention him, is a matter of some doubt,

because the two authorities for it contradict one another. A
scholiast of the 10th century has written, in the margin of a

MS. of Theon’s manual tables (now at Leyden), opposite the

name Diocletian, eVl tovtov 6 Havro? 6ypa4>eu, which can

hardly refer to anybody but our Pappus. Suidas, however,

says that Pappus was a contemporary of Theon and as it is

evident from the same tables that Theon lived about 372, in

the time of Theodosius, the two accounts vary by nearly a

hundred years. Now Suidas says that Pappus WTote a com-

mentary on the four (instead of 13) books of the Almagest

and it is in the highest degree unlikely that both Theon

and Pappus, living in Alexandria at the same time, should

both have written a commentary on the same workh And
Suidas, besides making a mistake about the Almagest it-

self, does not mention Pappus’s great work, the orvvaycoy'q, at

all. From this it is inferred that Suidas knew hardly any-

thing about Pappus and the other writer, who assigns him to

Diocletian’s time (a.d. 284-305) is deemed better worthy of

credence

^

Many writings are attributed to Pappus. Proclus (p. 429)

speaks of Pappus’ pupils {oi Trepl UdirTrov), so he evidently

was the head of a school. Eutocius (in Torelli, p. 208), and

Suidas mention his commentary on the Almagest. The former

also (Torelli, p. 90), mentions some notes on Euclid’s Elements I

Suidas ascribes to him a description of the earth, a book on the

rivers of Libya and another on the interpretation of dreams.

Pappus himself (iv. 27, p. 246), speaks of his commentary on the

analemma of Diodorus, a writer of whom nothing is known.

Proclus (pp. 189, 190), perhaps quoting the notes on Euclid,

1 Nevertheless Theon does not men- Vol. of his Pappus and Cantor, pp.

tion Pappus’s commentary. Hultsch, 374—376.

as above stated, thinks he stole from ^ From these, no doubt, Axx. 4 and

it. 5 were taken (Proclus, p. 197, 6).

- See Hultsch’ s preface to the 3rd
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says that Pappus pointed out that an angle may

be equal to a right angle without being a right

angle. In the annexed figure of two equal semi-

circles, for instance, the angle comprised between

the two curves- a.<y, is obviously equal to the

right angle

But the one work by which Pappus is known is his (Tvva^oa^r),

a collection of mathematical papers, originally in 8 books, of

which the first and part of the second are ndissing. This is the

work to which so frequent references have been made in these

pages and which, of all extant Greek books, is the richest in

information on the lost treatises of the foremost Greek geometers.

The design of the collection is to give a brief account of the

contents of most of the mathematical works which, in Pappus’s

day, enjoyed the highest repute and then to set out lemmas or

auxiliary propositions to them. These lemmas, however, as is

evident by a comparison of them with extant works, such as

Euclid’s Phaenomena or Apollonius’ Conics, are selected in the

freest possible manner, and have often no apparent bearing on

the book which they are supposed to illustrate. On the other

hand the same comparison shews that Pappus gives a very

careful and correct summary of the works of which he

treats, and for this reason it seemed possible to the mathema-

ticians of the last century to reconstruct lost works on the

authority of Pappus alone.

155 . The contents of the avvaycoyr] may be here briefly

indicated ^

The fragment of Book ii. deals entirely with the tetrads of

Apollonius and has been described above (pp. 62—63).

Book III. contains four tracts, the first on the methods of

duplication of Eratosthenes, Nicomedes, Heron and Pappus

himself ; the second on the theory of proportion, introduced by

a problem to exhibit an arithmetical, a geometrical and a

harmonic mean in the same figure^: the third is on Euclid i. 21,

and shews that if the straight lines meeting within the triangle

1 This summary is partly from arithmetical, geometrical or har-

Cantor, pp. 378—382. monical mean, according as

2 pp. 70, 72. Between a and c, & is a - b : b - c = a : a, or a : b, or a : c.

G.G.M. 20



306 LAST YEARS.

be drawn from two points not the extremities of the base, then

“ the sides of the included triangle may be greater than the

sides of the triangle which includes it in any ratio which is less

than that of two to one ^ ”
: the fourth is on the five regular

polyhedra inscribed in the sphere and uses the Sphaerica of

Theodosius. Here Pappus proceeds by a method contrary to

that of Euclid xiii. Euclid, who finds a ratio between a side of

the polyhedron and the diameter of the sphere, constructs the

polyhedron first and describes the sphere about it : Pappus

constructs the sphere first and inscribes the polyhedron.

Book IV. begins with the theory of transversals to the circle,

followed by the problem to describe a circle about three circles

which touch one another. Then follow more problems on

figures touching one another. Pappus next passes to the spiral

of Archimedes, the conchoid of Nicomedes and the quadratrix,

which last is very fully discussed. Various subjects are here'

incidentally treated, such as the rectification of the circle, the

relations between the quadratrix and the spiral, the trisection

of an angle, the division of a circle, into arcs which have to one

another a given ratio, by means of the quadratrix and the

spiral, the use of the quadratix for the solution of the three

problems (1) to describe in a circle a regular polygon of any

number of sides, (2) to find for any given chord a circular

arc which has a given ratio to the chord, and (3) to draw

angles which shall be incommensurable with one another.

Book V. begins with an extract from the work of Zenodorus

on plane figures of equal periphery, passes then to the trea-

tise of Archimedes on the half-regular solids, then returns to

Zenodorus on solids of equal surface and shews that, of the

regular solids with equal surface, that is the greatest which

has most angles.

Book VI. gives lemmas to the piKpo^; dcrTpovofiovfi€vo<;

(totto?) or Minor collection of Astronomy^, This contained,

according to the preface, the following works, viz., the Sphaerica

^ Simson’s note to End. i. xxi. study intermediate between the Ele-

2 This collection, with some Arabic ments of Euclid and the Almagest,

additions, constituted the “ middle See Steinschneider in Zeitschr. Math.

books” of the Arabs, i.e. the course of Phys. for 1865, x. pp. 456—498.
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of Theodosius, the Data, Optica, Catoptrica and Phaenomena of

Euclid, the irepl Sioi/cTjaecov {De Habitationibus) and De Noctibus

et Diebus of Theodosius, the Moving Sphere of Autolycus, the De

Magnitudinibus etc. of Aristarchus, the dvacfyoptKo^; of Hypsicles,

the Sphaerica of Menelaus. The books, perhaps, were not

studied in this order, for it is difficult to see why Autolycus

should be taken after Euclid, but on the other hand the totto?

dvaXvopevo^ was studied in the order of its books^ and there

seems no reason otherwise for dividing the works of Theodosius.

Pappus omits the Catoptrica, the dvacpopiKo^; and the Spherics of

Menelaus, but as he promises (p. 602 tin. 1) some lemmas to a

commentary by Menelaus on Euclid’s Phaenomena, which are

not now included in the book, it may be that some mutilation

has taken place.

Book VII. deals, in like manner, wdth the totto? dvaXvogevo^

’or Collection of Analysis. This contained Euclid’s Data,

Apollonius’ Sectio Eationis, Sectio Spatii, Sectio Determinata,

De Tactionibus, Euclid’s Porisms, Apollonius’ De Inclinationibus,

Plane Loci, and Conics, the Solid Loci of Aristaeus, the tottol

TTpo^ i7rt(f)av€La of Euclid and lastly Eratosthenes’ rrepl peao-

Tr]T(ov. The contents of these, down to the Conics, are described

in a long preface and then follow lemmas to all the books except

the Data and those of Aristaeus and Eratosthenes. The

Porisms of Euclid are taken between the Plane Loci and the

Conics of Apollonius, but otherwise the above order is preserved.

Book VIII. begins by announcing that it will deal with some

mechanical questions “more tersely and clearly and in a better

manner” than they had been handled by the ancients. To

these belong the theory of the centre of gravity and of the

inclined plane, and the problem, by means of cogwheels whose

diameters are in a given ratio, to move a given weight with a

given power. Here, again, arises the duplication-problem,

or rather the problem to construct a cube which has a given

ratio to another cube. This is solved by a mechanical device.

Pappus then discusses the method of finding the diameter of a

cylinder which is broken so that an exact measurement can-

^ Cf. p. 636. 18. “Of the above mentioned books of analysis the order

(ra^ts) is as follows.”

20—2
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not be taken on either base. Suddenly he passes thence to

problems (or porisms) to find given points on a sphere, e.g. the

point which is nearest to a given plane or the points in which a

given straight line will cut the sphere. Then he shews how to

inscribe seven similar regular hexagons in a circle, one having

the same centre as the circle, the other six standing each on

one side of the first. This problem serves for the construction of

cogwheels and extracts from the /3apoi)X/co? and the Mechanics

of Heron, added perhaps by a later hand, conclude the collection.

156 . To the development of Greek geometry the Collection

of Pappus can hardly be deemed really important. It is

evidence, indeed, that the geometrical school of Alexandria was

still flourishing after 600 years and it shews what subjects were

studied there. But among his contemporaries Pappus is like

the peak of Teneriffe in the Atlantic. He looks back, from a

distance of 500 years, to find his peer in Apollonius. In the

long interval, only two or three writers, Zenodorus and Serenus

and Menelaus, had produced in pure geometry a little work of

the best order, and there are none such to follow. The

Collection of Pappus is not cited by any of his successors h and

none of them attempted to make the slightest use of the proofs

and apergus in which the book abounds. It becomes interesting

only in the history of mathematics during the 1 7th and 18th

centuries, when there were again geometers capable of using it

and others who independently struck out and pursued lines

of investigation which w^ere more or less clearly anticipated by

Pappus. To give here an elaborate account of Pappus

would be to create a false impression. His work is only

the last convulsive effort of Greek geometry which was now
nearly dead and was never effectually revived. It is not so

with Ptolemy or Hiophantus. The trigonometry of the former

is the foundation of a new study which was handed on to other

nations indeed but which has thenceforth a continuous history

of progress. Diopliantus also represents the outbreak of a

movement which probably was not Greek in its origin, and

^ Hultsch’s Preface to Vol. in. p. 3. Pappus, cites the proposition viii. 11

Eutocius however, (in Torelli p. 139) of the Collectio. (This is also in Bk.

referring to the /j.r)xapiKal elaayooyal of iii. pp. 64—69 of Hultsch).
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which the Greek genius long resisted, but which was especially

adapted to the tastes of the people who, after the extinction of

Greek schools, received their heritage and kept their memory

green. But no Indian or Arab ever studied Pappus or cared in

the least for his style or his matter. When geometry came

once more up to his level, the invention of analytical methods

gave it a sudden push which sent it far beyond him and he was

out of date at the very moment when he seemed to be taking a

new lease of life.

A few lines only will be sufficient to call attention to some

passages of Pappus in which modern geometers still take an

antiquarian intei^sth These occur mostly in Book vii. Here

(p. 682) occurs the theorem, afterwards re-discovered or stolen by

Guldin (1577-1643), that the volume of a solid of revolution is

equal to the product of the area of the revolving figure and the

length of the path of its centre of gravity. Here also (p. 1013)

Pappus first found the focus of a parabola and suggested the

use of the directrix. Here in the lemmas to the Sectio Determi-

nata the theory of points in involution is propounded : and

among those to the Be Tactionibus the problem is solved, to

draw through three points lying in the same straight line, three

straight lines which shall form a triangle inscribed in a given

circled Here also (p. 678) occurs the problem “given several

straight lines, to find the locus of a point such that the perpen-

diculars, or more generally straight lines at given angles, drawn

from the point to the given lines shall satisfy the condition that

the product of certain of them shall be in a given ratio to the

^ Some of these have been mentioned

before a propos of the books to which

the lemmas of Pappus refer. A sum-

mary of a kind more satisfying to the

modern geometer will be found in

Chasles Apergu pp. 28—44. Cantor

pp. 382-—386 cites generally the same
propositions as Chasles, but adds some
remarks on hints of algebraical sym-

bolism in Pappus. Taylor {Anc. and
Mod. Conics, pp. lii—liv) gives little

more than the lemmas to Euclid’s

porisms from Book vii.

2 On this problem (no. 117) Chasles

has the following remarks’. “The props.

105, 10,7, 108 are particular cases of

it. One of the points is there supposed

to be at infinity. The problem, gen-

eralised by placing the points anywhere,

has become celebrated by its difficulty,

by the fame of the geometers who
solved it and especially by the solution,

as general and simple as possible,

given by a boy of 16, Ottaiano of

Naples.” Apergu, pp. 44, 328.
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product of the rest Descartes and Newton brought this into

celebrity as the “problem of Pappus.” But though the seventh

Book, which contains the lemmas to the totto^ dvaXv6^evo<^ is

by far the most important, there is matter in the other books of

a very surprising character. The 4th Book, which deals with

curves, contains a great number of brilliant propositions,

especially on the quadratrix and the Archimedean spiral. Pap-

pus supplements the latter by producing (p. 261 sqq.), a spiral

on a sphere, in which a great circle revolves uniformly about a

diameter, while a point on the circle moves uniformly along its

circumference. He then finds the area of the surface so deter-

mined, “a complanation which claims the more lively admiration,

if we remember that, though the whole spherical superficies was

known since Archimedes’ time, to measure portions of it, such as

spherical triangles, was then and for long afterwards an unsolved

problem^”. The 8th Book (p. 1034 sqq.) contains a proposition to

the effect that the centre of gravity of a triangle is that of another

triangle of which the vertices lie on the sides of the first and

divide them all in the same ratio ^ All these, and many more of

equal difficulty, seem to be new and of Pappus’ own invention. It

ought not, however, to be forgotten that in at least three cases,

which have been noticed above in their proper places. Pappus

seems to have assumed credit to which he is not entitled. In

Book III. he gives as his own a solution of the trisection-problem

with a conchoid, which can hardly be other than the solution

which Proclus ascribes to Nicomedes : in Book iv. he gives 14

propositions of Zenodorus without so much as naming that

author : and in Book viii. he solves the problem ‘ to move a

given weight with a given power’ in a manner which differs

only accidentally from Heron’s^. It is probable that many

^ It is in this problem that Pappus

objects to having more than 4 straight

lines, on the ground that a geometry

of more than three dimensions was

absurd.

2 Cantor p. 384.

3 Pappus supposes points, starting

simultaneously from the three vertices,

to move along the sides with velocities

proportionate to the length of the sides.

4

In Heron the weight is 1000 talents,

the power 5, and he solves the problem

by a series of cogwheels, the diameters

of each pair being in the ratio 5:1.

Pappus takes the weight 160, power 4

and the diameters 2:1. See Pappus

VIII. prop. 10 (p. 1061 sqq.) and Vin-

cent’s Heron cited svpi'a, p. 278 n.
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works of ancient geometers were, in Pappus’ time, becoming

rare. Pappus himself, for instance, does not seem to have seen

Euclid’s Conics and Eutocius and Proclus (much later) had

certainly not seen many books which they knew by name\ It

was therefore possible to appropriate many proofs without

much chance of detection and it may be that Pappus used this

opportunity.

157 . It was suggested at the beginning of this chapter, that

possibly the Jews had something to do with the revival of the

arithmetical investigations which culminate about this time in

the Algebra of Diophantus. It is possible also that the decay

of Greek geometry was due to the gradual advance of peoples

who have never, at any time, cared much for this branch of

mathematics, though they have a surprising natural talent for

the other. At any rate, nearly all the leading writers of the

Neo-Platonic and Neo-Pythagorean schools were not Greeks.

Philo was a Jew: Nicomachus was an Arabian: Ammonius
the founder of Neo-Platonism was an Egyptian : so was Ploti-

nus : Porphyrins came from Tyre : the name of Anatolius,

wherever he was born, means literally ‘Oriental’: lamblichus

was a native of Chalcis, in Coelesyria. These are the philoso-

phers who, in the first four centuries of our era, commanded the

largest influence and not one of them was a geometer. Never-

theless, the world is wide and the geometrical school at

Alexandria was still largely attended, though it produced no

brilliant professors after Pappus. Perhaps Patricius, the

author of two rules now inserted in Heron’s works {Geom. 104*

and Stereom, I. 22) belonged to this time, but there are two

persons of this name, one a Lydian of about A.D. 874, the other

somewhat later, a Lycian and the father of Proclus. Theon of

Alexandria was certainly making astronomical observations in

A.D. 3G5 and 872, and he as certainly held classes {avvovaiat)

for which he prepared his edition of Euclid. We have seen also

that the preface to Euclid’s Optics consists of notes from Theon’s

lectures. He also wrote a commentary on the Almagest, {ed.

Halma. 1821) most of which is extant and which is perhaps in

1 Heiberg, Litterargesch. Euklid. p. 89.
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great part founded on the similar work of Pappus \ This also

contains many little historical notices which have been extracted

above in their proper places, and the commentary to Book i. of

Ptolemy is especially valuable for its specimens of Greek

arithmetic. Theon’s daughter Hypatia (ph. a.d. 415), seems to

have been a better mathematician than her father. The story

of her life and her tragical death are familiar to English readers

through Kingsley’s novel. None of her works are extant, but

Suidas (suh voce) says she wrote ‘^vTro/jbVTj/iia et? AcocfiavTrjv rov

aarpovofiiKov Kavova eh Ta kcovcku ^K.7roWwviov vTrofivrj/jLa”.

This may mean three works, viz. : notes to Diophantus, the

astronomical canon and notes to Apollonius’ conics, or (altering

Ato(pdvT7)v to AtocjidvTov) may refer to two only, notes to the

astronomical canon of Diophantus and notes to the conics.

Hypatia was the last of the Alexandrian professors who attained

any fame. The Neo-Platonic school in Athens, under Syrianus,

now began to attract more attention, and in the interests of

Platonism the historical study of geometry was for a time

revived. Proclus the successor (SidSoxo^) of Syrianus at the

Athenian school (a.d. 410—485), studied in Alexandria and

there acquired that general acquaintance with Greek geometry

which enabled him to write his commentary on Euclid’s

Elements. His notes on the first Book are still extant^ and

contain a very large proportion of all the most valuable informa-

tion we possess on the history of Greek geometry. But Proclus

himself is a wordy and obscure writer and his best things are

taken from Geminus and Eudemus. Proclus’ pupil Marinus of

Neapolis (i.e. Flavia Neapolis, the ancient Sychem in Palestine)

wrote the life of his master and is the author of the preface to

Euclid’s Data. He also was at the head of the Athenian

school. Isidorus succeeded him and was the teacher of

Damascius of Damascus, who appended the 15th Book to

1 The MSS. have a fragment of

Pappus’s commentary at the beginning

of Theon’s to Book v. and in Theon’s

to Book I. occurs a tractate on cal-

culation with sexagesimal fractions

which is, in some mss, attributed to

Pappus or Diophantus.

2 Some of the extant scholia to the

other books are thought to be by

Proclus. See Knoche’s essay, cited

above p. 74 n.
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Euclid’s elements\ and also of Eutocius of Ascalon, the commen-

tator on Archimedes and Apollonius. Along with Damascius,

Simplicius, the author of the commentary to Aristotle’s Be

Coelo, taught in the Athenian school, but the Emperor

Justinian, who was by way of being a Christian, did not approve

of the heathen learning and, after many annoying decrees,

finally in 529 closed the school altogether. MeanYrhile in

Alexandria the study of mathematics was still in some sort

maintained, but it may be conjectured that there was no great

zeal for geometry since the only mathematical works of which

we hear anything are three commentaries on the Arithmetic of

Nicomachus, by Hermas, Asclepius of Tralles and Johannes

Philoponus. The end was rapidly approaching. Mahomet fled

from Mecca in September 622 and died in 632, and his successors

prepared to enlarge the realm of Islam with the sword.

In 640 Alexandria fell and then “with one stride comes

the dark

158. A summary of the history of Greek mathematics,

which has been given in these pages, can be rendered effective

only by being so condensed that conjecture is indistinguishable

from fact.

At first, the h-igber mathematics were cultivated only in the

s^^yice of philosophy and it was part of every philosophical creed

to despise the aims. ai:id..m^t§ of the vulgar. The same prejudice

remained after mathematics had come to be studied for their

own sake, and thus the attention of competent mathematicians

wa^always diverted from the ordinary methods of calculation

/^pOTTi etry wa.s.,,iQtmdu,c.ad- -by Thales, from

Egypt, butJhe same knowledge^^-wasrS^fiaew later, imported

1 This supposition is founded on the

fact that the author of Bk. xv. mentions

(prop. 7) his great teacher Isidorus.

Cantor (p. 426) points out that there was

another Isidorus of Miletus, in this cen-

tury, who along with Anthemius of Tral-

les built the San Sofia church at Con-

stantinople. Book XV. appended to the

Elements contains only 7 props, chiefly

problems to inscribe one regular solid

in another.
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^elsewhere by Pythagoras and led in his hands to far,, mo^jg^im-

gortant Results. He also, by insisting that every proposition on

the relations of lines, or continuous magnitudes, has its analogue

in the relations of numbers, or discrete magnitudes, and vice versd

started the investigation of the theor}^ of numbers and gave to

this inquiry its deductive style and the geometrical nomenclature

which it always retained. From his time both these studies

advance almost pari passu, but the history of the theory of

numbers is far more obscure than that of geometry.

In the fifth century B.c. the head-quarters of mathematics

shift from Italy to Athens. Here Hippocrates opened the

geometry of the circle, which Pythagoras had neglected for that of

rectilineal figures, and he also recast the problem of duplication

of the cube into one^. Qf...._plaiie geometry. Plato revived

stereometry and raisad-analysisjo^the position of a recognized

geometrical method. The Athenian successors of Plato began

the study of conics and other curves.

Then, about B.c. 300, the head-quarters are removed to

Alexandria and in the following century Greek mathematics

reach their highest development. Stoe-ometry, the geometry

of conics and theory of loci were now practically complete, so

far as the Greeks were able to finish them. Succeeding cen-

turies do no more than treat of isolated cases .which the great

geometers had overlooked.

But during this time practical astronomy had been making

rapid strides in the hands of Eudoxus, Aristarchus, Eratosthenes

and others do’wn to Hipparchus. Now the needs of the

practical astronomer are in many respects similar to those of

the surveyor, the engineer and the architect. Each of these is

chiefly concerned, not to^find the general rules which govern all

similar cases, but to find under what general rules a particular

case, presented to them, falls. But the question whether an

angle is acute, or a triangle isosceles, can be determined only by

measurement, and hence about 130 B.C., in the time of Heron

and Hipparchus, we find the results of geometry applied to

measured figures, for the purpose of finding some other measure-

ment as yet unknown. Trigonometry and an elementary

algebraical method are thus introduced. For such calculations
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the Egyptians and Semites, who had now secured the grand

results of Greek deductive science, had an especial aptitude, and

the study of the theory of numbers, which was revived by Neo-

Platonists and Neo-Pythagoreans, mostly of Semitic and

Egyptian origin, changes its character accordingly. With Nico-

machus, in effect, propositions no longer run ‘‘All numbers,

having the same characteristic, have such or such another

characteristic”, but, “ The following numbers have the same

characteristics”. The equations of Diophantus, in which for

the first time algebraical symbols appear, and which are intend-

ed to find numbers which satisfy given conditions, are the

inevitable consequence.

The learning of the Greeks passed over in the 9th century to

the Arabs and with them came round into the West of Europe.

But no material advance was made by the Arabs in geometry

and it was their arithmetic, trigonometry and algebra which

chiefly interested the mediaeval Universities. In the 16th cen-

tury Greek geometry again became known in the original and

was studied with intense zeal for about 100 years, until Descartes

and Leibnitz and Newton, the best of its scholars, superseded it.
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Honein and his son, 204

Horizon, 211

Hostus, 64 n.

Hydrostatics of Archimedes, 240—'241

Hypatia, 312

Hyperbola, 84 n., 252, 258

Hypsicles, 52 n.: his dvacpopiKos, 87,

273: opos, 87—88: his date, 272:

geometrical works, 273—274

lamblichus, on digits, 98

(Incommensurables and Irrationals, 78,

I

79 sqq. : meaning of these terms in

y
Euclid, 79 n. : growth of the theory,

85—86
Indian numerals, 37—39; geometry,

156, 281 n. ;
trigonometry, 298—299

Introductio Arithmetica of Nicomachus,

89—95
Introductio Harmonica of Euclid, 214

Isidorus, 312

Latus rectum, 253

Lemmas of Archimedes, 232

Leodamas, 183

Leon, 183

Leonardo of Pisa, 206

Lepsius, 3

Lesser line, 83 n.

Loci, attrib. to Thales, 144 : Greek

names for, 187
:

propositions so

called, 219

Loci ad superfidem, 215—216

Loci ad tres et quattuor lineas, 248 n.

Logarithms, 59 n.

Logistica, described Chap. 3 : dist.

from arithmetica, 22—23, 56

Lunes, quadrature of, 165—168

Machines, the five simple and their

names, 277

Magnus, 61, 65, 107 n.

Mamercus, 145

Mandryatus, 145

Marinus, 209, 312

Martianus Capella, 26, 72 n., 202

Mathematici Veteres, 277 n., 302—303

Maxima and minima, 84 n., 255

Measurement of the Circle by Archi-

medes, 233—237

Mechanics of Archytas, 158 : of Aris-

totle, 189, 238 : before Archimedes,

237—238 : of Archimedes, 238—243

Medial lines, 80 sqq.

Menaechmus, 185—187

Menelaus, 291, 292

Meno, mathematical passages in, 174

—

175, 179

Meridian, 211

Mesolabium, 245—246

pLeaoTTjs, 93

Meton, 161

Metrodorus, 98, 99

Middle Books of the Arabs, 306 n.

puKpbs darpovopo^pevos, 306, 307

Multiplication, 50, 51

Nasr-Eddin, 196 n., 246
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Neo Platonists and Neo Pythagoreans,

311

Nesselmann, p. 14 andpassim in Chaps.

3 and 4

Nicolaus Smyrnaeus, 24—26 and Add.

Nicomachus of Gerasa, date and works,

88—89 : Introductio, 89—95

Nieomedes, 163, 266—268

Nicoteles, 221

Noviomagus, 64

Numbers, Pythagorean classification

of, 69—71, 92, 96

Numerals, names, 1—12: Eoman sym-

bols, 32 : Greek, 34, 29—49

Nuptial number in Plato, 69 n.

Octads, 57—61
Oenopides, 146—147

Optica, Euclid’s, 212—214 : Ptolemy’s,

300

TT, approximate values of, 127, 235

299

Parabola, 84 w., 252, 256

Parallel lines, 201, 202, 300—301

Parallelogram of forces, 238 and n.

Parameter, 253

Patricius, 311

Pentagram, 151

Perfect numbers, 70, 77

Perseus, 163, 270

Perspective, 291 n.

Peyrard, 200

Phaenomenaoi Eudoxus, 183 : Euchd’s,

211—212

Philippus of Mende, 188

Philolaus, 69, 157

Philon of Byzantium, 263 and Add.

Philon of Gadara, 65

Philon of Tyana, 292

Philon’s line. Addenda

Philoponus, 122, 313

Phoenician numerals, 43 n.

Piremus, 128

[Plato, on logistica, 22—23, 65 : his

arithmetica, 69—71 : Bep. viii. 246,

/ 69 w. : Legg. 737—738, 72 n. : Meno,

G. G. M.

82 B. and 86 n, 174— 175. His life,

173 : use of mathem. illustrations,

174—175 : geom. definitions, 176 :

invention of analysis, 177—180

:

solution of duplication-probl. 180

Plato of Tivoli, 298.

Plus minus etc., signs for, 109 n.

Pneumatica, Heron’s, 277 n.

Polos, 132, 145 n.

Polygonal numbers, 87 n . , 88, 91—92,

103—104

Porisms, of Diophantus, 120—121

:

of Euclid, 217 —221

Postulates, Euclid’s, 201—202

Pott, 3 w., 4 n.

^
Prime numbers, 75, 77 n., 89

Proclus, 312 : his commentary on

Euclid, 134 n. and passim: other

scholia, 74 n.

Progressions, arithmetical, 97, 103

:

geometrical, in Ahmes, 19, 20, in

Euclid, 77

Projection, 299, 300

Proportion, 68 w., 70, 76, 92—94, 184

Ptolemy, his date, 293 : trigonometry

of, 293—298 : minor works, 299—301

Pyramids, 128 n.

Pyramidal numbers, 192

^thagoras, the abax, 22, 30, 37 : his

philosophy, 66—68, 71—72 : arith-

metica, 68—71 : visit to Egypt,

66—68 : his life, 147—148 : de-

fective evidence concerning, 68, 148,

149 : his geometry, 150—153 : con-

struction of regular solids, 153—154

:

Pythagorean theorem, 155—157 :

Jigura, 151 : his followers, 157—158

Quadratiix, 163—164, 306

Quadrature of the circle, 153, 161—162,

163: of lunes, 165—168: of the

parabola, 226—227

Quadrivium, 72 n.

Eectification of the circle, 306

Eeduction, geometrical, 169— 170,

177 n.

21
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Eefraction, 300

Eegula sex quantitatum, 292, 297

Eestorations of lost Greek works,

217—221, 247 n., 261, 262, 305

Eoediger, 24 n. and sqq.

Eoman fractions, 14 n . : abacus, 30—33

Eussian abacus, 31, 33 n.

Salaminian table, 33—36

SaXtvoj', 232

Savages, their numerals, 4—

7

Savile, Sir H., 208

Sectio Canonis Euclid’s, 214

Sectio Spatii etc. ofApollonius, 261, 307

Semitic numerals, 2 : abacus, 29—30

:

numeral signs, 43—44

Semites, probable influence of, on

Gk. mathematics, 107, 311

Seqem-calculations, 18

Seqt, 128, 129, 141, 142

Serenus, 270 n., 289—291

Series, 19, 20, 77, 97, 103

Sexagesimal fractions, 52, 293

Simplicius, 313

Simson, 200 : on Porisms, 218

Sine, 292 n., 298, 299

Sophists, 160—161

Spain, Arabic learning in, 205—206

XTreipa, 185, 270

Sphaerica pre-Euclidean, 212 : of Theo-

dosius, 212, 288 : of Menelaus,

291—292

Sphere and Cylinder of Archimedes,

227—229

Spheroids, treated by Archimedes,

231—232

Spiralibus, Be of Archimedes, 229—231,

310

Sporus, 269 n.

Square-roots, in Archimedes, 53—55 :

Theon’s rule for finding, 55—57

Stereometry, 181

Suan-pan, 31, 33 n.

Subtraction, 49 : of a ratio, 298 n.

^ Surds, 69 n., 73—74

Symbols, algebraic, 105—111

Syrianus, 312

Tabit ibn Corra, 89, 204, 246

Technical terms of Greek mathematics,

in arithmetic, 69, 70, 74, 75, 78, 79,

89—93, 108—109 : in geometry,

176 n., 199, 298 n.

Telegraphy, 303 n.

Tetrads, 62—63

Thales, 138—145
Theaetetus, on incommensurable lines,

85—86 : his geometry, 183

^Theodoras of Gyrene, 164

Theodosius, 288, 289

Theon of Alexandria, on compound

division, 52—53 : on square-roots,

58—57 : his edn. of Euclid’s Ele-

ments, 199—203 : notes on Euclid’s

Optics, 213 : date etc., 311

Theon Smyrnaeus, date and works,

95—96
Theudius, 188

Three, limit of counting, 8

Thymaridas, 96, 97, 100.

TOTTos dva\v6/jt,evos, 210, 211 n., 307

TOTToi, see Loci

Translations of Euclid’s Elements,

203—206, Addenda

:

see also Arabic

Triangles, numerical formulae for

right-angled, 70, 71, 81 n , ; Heron’s

rule for areas, 282—283 : centre of

gravity of, 239, 310

Triangular numbers, 70

Trigonometry, of Hipparchus, 275

:

Heron, 283—284 :Ptolemy,292— 298:

among Arabs and Indians, 298—299

Trisection of an angle, 161: effected

with quadratrix, 163 : by Archi-

medes, 233 : by Nicomedes or Pap-

pus, 268

Trivium, 72 w.

Tunnu-calculation, 19

Tylor, 4 n.

Varatio, 303

Uchatebt, 128

Veteres Mathematici, 277 n., 302, 303

Vieta, 262

Virtual velocity, 105 «.
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Viviani, 247 n.

Universities, mediaeval, 206, 207 :

mathematical work in Oxford and

Cambridge, 206—208

Woepcke, 37 n., 214

X in algebra. Addenda

Xenocrates, 71 w., 86

Zeno, 158 ; Aristotle’s answer to, 188

Zenodorus, 271, 306

Zeuxippus, 221
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PUBLICATIONS OF

€\)t Cambritiffe ©m'bersn'tg ^^rcssf.

THE HOLY SCRIPTURES, &c.

THE CAMBRIDGE PARAGRAPH BIBLE of the Au-
thorized English Version, with the Text Revised by a Collation of its

Early and bther Principal Editions, the Use of the Italic Type made
uniform, the Marginal References remodelled, and a Critical Intro-

duction prefixed, by F. H. A. Scrivener, M.A., LL.D., Editor of

the Greek Testament, Codex Augiensis, &c., and one of the Revisers

of the Authorized Version. Crown 4to. gilt. 21s.

From the Times.
“Students of the Bible should be particu-

larly grateful to (the Cambridge University
Press) for having produced, with the able as-

sistance of Dr Scrivener, a complete critical

edition of the Authorized Version of the Eng-
lish Bible, an edition such as, to use the words
of the Editor, ‘would have been executed long
ago had this version been nothing more than
the greatest and best known of English clas-

sics.’ Falling at a time when the formal revi-

sion of this version has been undertaken by a
distinguished company of scholars and divines,

the publication of this edition must be con-
sidered most opportune.”

From the A thenceum.
“Apart from its religious importance, the

English Bible has the glory, which but few
sister versions indeed can claim, of being the
chief "classic of the language, of having, in

conjunction with Shakspeare, and in an im-
measurable degree more than he, fixed the

language beyond any possibility of important
change. Thus the recent contributions to the

literature of the subject, by such workers as

Mr Francis Fry and Canon Westcott, appeal
to a wide range of sympathies; and to these

may now be added Dr Scrivener, well known
for his labours in the cause of the Greek Testa-

ment criticism, who has brought out, for the

Syndics of the Cambridge University Press,

an edition of the English Bible, according to

the text of i6ii, revised by a comparison with
later issues on principles stated by him in his

Introduction. Here he enters at length into

the history of the chief editions of the version,

and of such features as the marginal notes, the

use of italic type, and the changes of ortho-

graphy, as well as into the most interesting

question as to the original texts from which
our translation is produced.”

From the Methodist Recorder.
“ This noble quarto of over 1300 pages is in

every respect worthy of editor and publishers
alike. The name of the Cambridge University
Press is guarantee enough for its perfection in

outward form, the name of the editor is equal
guarantee for the worth and accuracy of its

contents. Without question, it is the best
Paragraph Bible ever publislaed, and its re-

duced price of a guinea brings it within reach
of a large number of students.”

From the London Quarterly Review.
“ The work is worthy in every respect of the

editor’s fame, and of the Cambridge University
Press. The noble English Version, to which
our country and religion owe so much, was
probably never presented before in so perfect a
form.”

THE CAMBRIDGE PARAGRAPH BIBLE. Student’s
Edition, on good writingpaper

^

with one column of print and wide
margin to each page for MS. notes. This edition will be found of
great use to those who are engaged in the task of Biblical criticism.

Two Vols, Crown 4to. gilt. 31J. (id.

THE AUTHORIZED EDITION OF THE ENGLISH
BIBLE (1611), ITS SUBSEQUENT REPRINTS AND MO-
DERN REPRESENTATIVES. Being the Introduction to the
Cambridge Paragraph Bible (1873), re-edited with corrections and
additions. By F. H. A. SCRIVENER, M.A., D.C.L., LL.D., Pre-
bendary of Exeter and Vicar of Hendon. Crown 8vo. yj. (id.

THE LECTIONARY BIBLE, WITH APOCRYPHA,
divided into Sections adapted to the Calendar and Tables of
Lessons of 1871. Crown 8vo. 3^. (d.

London : C. J. Cla y Son, Cambridge Univei'sity Press Warehouse^
Ave Maria Lane.



CAMBRIDGE UNIVERSITY PRESS BOOKS. 3

BREVIARIUM AD USUM INSIGNIS ECCLESIAE
SARUM. Juxta Editionem maximam pro Claudio Chevallon
ET Francisco Regnault a.d, mdxxxi. in Alma Parisiorum
Academia impressam : labore ac studio Francisci Procter,
A.M., ET Christophori Wordsworth, A.M.

Fasciculus I. In quo continentur Kalendarium, et Ordo
Temporalis sive Proprium de Tempore totius anni, una cum
ordinali suo quod usitato vocabulo dicitur PiCA SIVE DiRECTORlUM
Sacerdotum. Demy 8vo. iSs.

“ The value of this reprint is considerable to
liturgical students, who will now be able to con-
sult in their own libraries a work absolutely in-

dispensable to a right understanding of the his-
tory of the Prayer-Book, but which till now
usually necessitated a visit to some public
library, since the rarity of the volume made its

cost prohibitory to all but a few. . . . Messrs
Procter and Wordsworth have discharged their

editorial task with much care and judgment,
though the conditions under which they have
been working are such as to hide that fact from
all but experts.”

—

Literary Churchman.

Fasciculus II. In quo continentur Psalterium, cum ordinario
Officii totius hebdomadae juxta Horas Canonicas, et proprio Com-
pletorii, Litania, Commune Sanctorum, Ordinarium Missae
CUM Canone et XIII Missis, &c. &c. Demy 8vo. \2s.

“Not only experts in liturgiology, but all

persons interested in the history of the Anglican
Book of Common Prayer, will be grateful to the
Syndicate of the Cambridge University Press
for forwarding the publication of the volume
which bears the above title, and which has
recently appeared under their auspices.”

—

Notes and Queries.
“Cambridge has worthily taken the lead

with the Breviary, which is of especial value
for that part of the reform of the Prayer-Book
which will fit it for the wants of our time ....

For all persons of religious tastes the Breviary,
with its mixture of Psalm and Anthem and
Prayer and Hymn, all hanging one on the
other, and connected into a harmonious whole,
must be deeply interesting.”

—

Church Quar-
terly Review.

“The editors have done their work excel-
lently, and deserve all praise for their labours
in rendering what they justly call ‘ this most
interesting Service-book ’ more readily access-
ible to historical and liturgical students.”

—

Saturday Review.

Fasciculus III. In quo continetur Proprium Sanctorum
quod et sanctorale dicitur, una cum accentuario. [Nearly ready.

GREEK AND ENGLISH TESTAMENT, in parallel
Columns on the same page. Edited by J. Scholefield, M.A. late

Regius Professor of Greek in the University. Small Odlavo. New
Edition, with the Marginal References as arranged and revised by
Dr Scrivener. Cloth, red edges, yj. 6^.

GREEK AND ENGLISH TESTAMENT. The Stu-
dent’s Edition of the above, on large writingpaper. 4to. \2s.

GREEK TESTAMENT, ex editione Stephani tertia, 1550.
Small 8vo. 3^. (id.

THE NEW TESTAMENT IN GREEK according to the
text followed in the Authorised Version, with the Variations adopted
in the Revised Version. Edited by F. H. A. Scrivener M.A.,
D.C.L., LL.D. Crown 8vo. (iS. Morocco boards or limp. 12s.

THE PARALLEL NEW TESTAMENT GREEK AND
ENGLISH, being the Authorised Version set forth in 1611 Arranged
in Parallel Columns with the Revised Version of 1881, and with the

original Greek, as edited by F. H. A. Scrivener, M.A., D.C.L.,

LL.D. Prebendary of Exeter and Vicar of Hendon. Crown 8vo.

I2S. 6d. The Revised Version is the Joint Property of the Universi-

ties of Cambridge and Oxford.

London : C. J. Cla y Son, Cambridge University Press Warehouse,
Ave Maria Lane.
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THE BOOK OF ECCLESIASTES, with Notes and In-

troduction. By the Very Rev. E. H. Plumptre, D.D., Dean of

Wells. Large Paper Edition. Demy 8vo. "js. 6d.

“No one can say that the Old Testament is point in English exegesis of the Old Testa-
a dull or worn-out subject after reading this ment; indeed, even Delitzsch, whose pride it

singularly attractive and also instructive com- is to leave no source of illustration unexplored,
mentary. Its wealth of literary and historical is far inferior on this head to Dr Plumptre.”

—

illustration surpasses anything to which we can Academy, Sept. lo, 1881.

THE GOSPEL ACCORDING TO ST MATTHEW in

Anglo-Saxon and Northumbrian Versions, synoptically arranged;

with Collations of the best Manuscripts. By J. M. Kemble, M.A.
and Archdeacon Hardwick. Demy 4to. loj-.

New Edition. By the Rev. Professor Skeat. \_In the Press.

THE GOSPEL ACCORDING TO ST MARK in Anglo-
Saxon and Northumbrian Versions, synoptically arranged: with Col-

lations exhibiting all the Readings of all the MSS. Edited by the

Rev. Professor Skeat, M.A. late Fellow of Christ’s College, and
author of a McESO-GoTHic Dictionary. Demy 4to. loj.

THE GOSPEL ACCORDING TO ST LUKE, uniform
with the preceding, by the same Editor. Demy 4to. loj.

THE GOSPEL ACCORDING TO ST JOHN, uniform
with the preceding, by the same Editor. Demy 4to. los.

The Gospel according to St John, in
Anglo-Saxon and Northumbrian [Versions:

Edited for the Syndics of the University
Press, by the Rev. Walter W. Skeat, M.A.

,

Elrington and Bosworth Professor of Anglo-
Saxon in the University of Cambridge, com-
pletes an undertaking designed and com-

menced by that distinguished scholar, J. M.
Kemble, some forty years ago. Of the par-

ticular volume now before us, we can only say
it is worthy of its two predecessors. We repeat
that the service rendered to the study of Anglo-
Saxon by this Synoptic collection cannot easily

be overstated.”

—

Contemporary Review.

THE POINTED PRAYER BOOK, being the Book of
Common Prayer with the Psalter or Psalms of David, pointed as

they are to be sung or said in Churches. Royal 24mo. \s. 6d.

The same in square 32mo. cloth. Qd.

“The ‘Pointed Prayer Book ’deserves men- for the terseness and clearness of the direc-

tion for the new and ingenious system on which tions given for using it.”

—

Times.
the pointing has been marked, and still more

THE CAMBRIDGE PSALTER, for the use of Choirs and
Organists. Specially adapted for Congregations in which the “ Cam-
bridge Pointed Prayer Book” is used. Demy 8vo. cloth extra, 3^. (>d.

cloth limp, cut flush. 2s. 6d.

THE PARAGRAPH PSALTER, arranged for the use of
Choirs by Brooke Foss Westcott, D.D., Regius Professor of

Divinity in the University of Cambridge. P'cap. 4to. 5J.

The same in royal 32mo. Cloth Is. Leather Is. Qd.

“The Paragraph Psalter exhibits all the and there is not a clergyman or organist in

care, thought, and learning that those acquaint- England who should be without this Psalter
ed with the works of the Regius Professor of as a work of reference.”

—

Morning Post.
Divinity at Cambridge would expect to find,

THE MISSING FRAGMENT OF THE LATIN TRANS-
LATION OF THE FOURTH BOOK OF EZRA, discovered,

and edited with an Introduction and Notes, and a facsimile of the

MS., by Robert L. Bensly, M.A., Reader in Hebrew, Gonville and
Caius College, Cambridge, Demy 4to. loj-.

“Edited with true scholarly completeness.” no exaggeration of the actual fact, if by the
— Weshninster Review. Bible we understand that of the larger size

“It has been said of this book that it has which contains the Apocrypha, and if the
added a new chapter to the Bible, and, startling Second Book of Esdras can be fairly called a
as the statement may at first sight appear, it is part of the Apocrypha.”

—

Saturday Review,

London : C. J. Clay Son, Cambridge Univeisity Press Warehouse,

Ave Maria Lane.
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THEOLOGY-(ANCIENT).
THE GREEK LITURGIES. Chiefly from original Autho-

rities. By C. A. SwAiNSON, D.D., Master of Christ’s College, Cam-
bridge. Crown 4to. Paper covers. 1

5

j.

THE PALESTINIAN MISHNA. By W. H. Lowe, M.A.,
Lecturer in Hebrew at Christ’s College, Cambridge. Royal 8vo. 21s.

SAYINGS OF THE JEWISH FATHERS, comprising
Pirqe Aboth and Pereq R. Meir in Hebrew and English, with Cri-

tical and Illustrative Notes. By Charles Taylor, D.D. Master
of St John’s College, Cambridge, and Honorary Fellow of King’s
College, London. Demy 8vo. loj-.

“The ‘Masseketh Aboth’ stands at the
head of Hebrew non-canonical writings. It is

of ancient date, claiming to contain the dicta

of teachers who flourished from b . c . 200 to the
same year of our era. The precise time of its

compilation in its present form is, of course, in

doubt. Mr Taylor’s explanatory and illustra-

tive commentary is very full and satisfactory.”—Spectator.
“If we mistake not, this is the first precise

translation into the English language, accom-
panied by scholarly notes, of any portion of the
Talmud. In other words, it is the first instance
of that most valuable and neglected portion of

Jewish literature being treated in the same
way as a Greek classic in an ordinary critical

edition. . . Sayings of the fewish Fathers
may claim to be scholarly, and, moreover, of a
scholarship unusually thorough and finished.’

—Dublin University Magazine.
“A careful and thorough edition which does

credit to English scholarship, of a short treatise
from the Mishna, containing a series of sen-
tences or maxims ascribed mostly to Jewish
teachers immediately preceding, or immediately
following the Christian era...”

—

Contempo-
rary Review.

THEODORE OF MOPSUESTIA’S COMMENTARY
ON THE MINOR EPISTLES OF S. PAUL. The Latin Ver-
sion with the Greek Fragments, edited from the MSS. with Notes
and an Introduction, by H. B. SWETE, D.D., Rector of Ashdon,
Essex, and late Fellow of Gonville and Caius College, Cambridge.
In Two Volumes. Vol. L, containing the Introduction, with Fac-
similes of the MSS., and the Commentary upon Galatians—Colos-
sians. Demy 8vo. 12s.

“In dem oben verzeichneten Buche liegt

uns die erste Halfte einer vollstandigen, ebenso
sorgfaltig gearbeiteten wie schon ausgestat-

teten Ausgabe des Commentars mit ausfuhr-

lichen Prolegomena und reichhaltigen kritis-

chen und erlauternden Anmerkungen vor.”

—

Literarisches Centralblatt,
“It is the result of thorough, careful, and

patient investigation of all the points bearing
on the subject, and the results are presented
with admirable good sense and modesty.”

—

Guardian.
“Auf Grund dieser Quellen ist der Text

bei Swete mit musterhafter Akribie herge-
stellt. Aber auch sonst hat der Herausgeber
mit unermiidlichem Fleisse und eingehend-
ster Sachkenntniss sein Werk mit alien den-
jenigen Zugaben ausgeriistet, welche bei einer

solchen Text-Ausgabe nur irgend erwartet
werden konnen. . . . Von den drei Haupt-

VOLUME II., containing the Commentary on i Thessalonians

—

Philemon, Appendices and Indices. 12s.

“Eine Ausgabe . . . fur welche alle zygang- _“Mit deiselben Sorgfalt bearbeitet die wir
lichen Hiilfsmittel in musterhafter Weise be- bei dem ersten Theile geriihmt haben.”

—

niitzt wurden . . . eine reife Frucht siebenjahri- Literarisches Centralblatt (July 29, 1882).
gen Fleisses.”— Theologische Literaturzeitung
(Sept. 23, 1882).

handsphriften
. ,

sind yortreffliche photo-
graphische Facsimile’s beigegeben, wie uber-
haupt das ganze Werk von der University
Press zu Cambridge mit bekannter Eleganz
ausgestattet \s,t.^’ —Theologische Literaturzei-
tung.

“It is a hopeful sign, amid forebodings
which arise about the theological learning of
the Universities, that we have before us the
first instalment of a thoroughly scientific and
painstaking work, commenced at Cambridge
and completed at a country rectory.”- Church
Quarterly Review (Jan. 1881).

“ Hernn Swete’s Leistung ist eine so
tiichtige dass wir das Werk in keinen besseren
Handen wissen mochten, und mit den sich-
ersten Erwartungen auf das Gelingen der
Fortsetzung entgegen sehen.”

—

Gottingische
gelehrte Anzeigen (Sept. 1881).

LondQn: C. J. Clay Sy Suit, Cambridge University Press Warehouse^
Ave Maria Lane,



6 PUBLICATIONS OF

SANCTI IREN^I EPISCOPI LUGDUNENSIS libros

quinque adversus Haereses, versione Latina cum Codicibus Claro-

montano ac Arundeliano denuo collata, prsemissa de placitis Gnos-
ticorum prolusione, fragmenta necnon Graece, Syriace, Armeniace,
commentatione perpetua et indicibus variis edidit W. WiGAN
Harvey, S.T.B. Collegii Regalis olim Socius. 2 Vols. Demy 8vo.

i8j.

M. MINUCII FELICIS OCTAVIUS. The text newly
revised from the original MS., with an English Commentary,
Analysis, Introduction, and Copious Indices. Edited by H. A.
Holden, LL.D. late Head Master of Ipswich School, formerly
Fellow of Trinity College, Cambridge. Crown 8vo. js. 6d.

THEOPHILI EPISCOPI ANTIOCHENSIS LIBRI
TRES AD AUTOLYCUM edidit, Prolegomenis Versione Notulis
Indicibus instruxit Gulielmus Gilson Humphry, S.T.B. Collegii

SanCtiss. Trin. apud Cantabrigienses quondam Socius. Post 8vo.

Ss.

THEOPHYLACTI IN EVANGELIUM S. MATTH^I
COMMENTARIUS, edited by W. G. Humphry, B.D. Prebendary
of St Paul’s, late Fellow of Trinity College. Demy 8vo. ys. 6d.

TERTULLIANUS DE CORONA MILITIS, DE SPEC-
TACULIS, DE IDOLOLATRIA, with Analysis and English Notes,
by George Currey, D.D. Preacher at the Charter House, late

Fellow and Tutor of St John’s College. Crown 8vo. 5s.

THEOLOGY-(ENGLISH).

WORKS OF ISAAC BARROW, compared with the Ori-
ginal MSS., enlarged with Materials hitherto unpublished. A new
Edition, by A. Napier, M.A. of Trinity College, Vicar of Holkham,
Norfolk. 9 Vols. Demy 8vo. ^3. 3^-.

TREATISE OF THE POPE’S SUPREMACY, and a
Discourse concerning the Unity of the Church, by Isaac Barrow.
Demy 8vo. ys. 6d.

PEARSON’S EXPOSITION OF THE CREED, edited
by Temple Chevallier, B.D. late Fellow and Tutor of St Catha-
rine’s College, Cambridge. New Edition. Revised by R. Sinker,
B.D., Librarian of Trinity College. Demy 8vo. 12s.

“A new edition of Bishop Pearson’s famous
work has just been issued by the

Cambridge University Press. It is the well-

known edition ofTemple Chevallier, thoroughly
overhauled by the Rev. R. Sinker, of Trinity

College. The whole text and notes have been
most carefully examined and corrected, and
special pains have been taken to verify the al-

most innumerable references. These have been
more clearly and accurately given in very many

places, and the citations themselves have been
adapted to the best and newest texts of the
several authors—texts which have undergone
vast improvements within the last two centu-
ries. The Indices have also been revised and
enlarged Altogether this appears to be the
most complete and convenient edition as yet
published of a work which has long been re-
cognised in all quarters as a standard one."

—

Gtiardian.

Londo7i : C, J, Cla y ^ Son, Cambridge University Press lVa?'e/iouse,

Ave Maria La?ie.
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AN ANALYSIS OF THE EXPOSITION OF THE
CREED written by the Right Rev. John Pearson, D.D. late Lord
Bishop of Chester, by W. H. Mill, D.D. late Regius Professor of
Hebrew in the University of Cambridge. Demy 8vo. 5^-.

WHEATLY ON THE COMMON PRAYER, edited by
G. E. CORRIE, D.D. Master of Jesus College, Examining Chaplain
to the late Lord Bishop of Ely. Demy 8vo. js. 6d.

C^SAR MORGAN’S INVESTIGATION OF THE
TRINITY OF PLATO, and of Philo Judaeus, and of the effedls

which an attachment to their writings had upon the principles and
reasonings of the Fathers of the Christian Church. Revised by H. A.
Holden, LL.D., formerly Fellow of Trinity College, Cambridge.
Crown 8vo. 4^.

TWO FORMS OF PRAYER OF THE TIME OF QUEEN
ELIZABETH. Now First Reprinted. Demy 8vo. 6^7.

“ From ‘ Collections and Notes’ 1867—1876,
by W. Carew Hazlitt (p. 340), we learn that

—

‘A very remarkable volume, in the original

vellum cover, and containing 25 Forms of
Prayer of the reign of Elizabeth, each with the

autograph ofHumphrey Dyson, has lately fallen

into the hands ofmy friend Mr H. Pyne. It is

mentioned specially in the Preface to the Par-

ker Society’s volume of Occasional Forms of
Prayer, but it had been lost sight of for 200
years.’ By the kindness of the present pos-
sessor of this valuable volume, containing in all

25 distinct publications, I am enabled to re-
print in the following pages the two Forms
of Prayer supposed to have been lost.”

—

Ex^
tractfrom the Preface.

SELECT DISCOURSES, by John Smith, late Fellow of
Queens’ College, Cambridge. Edited by H. G. Williams, B.D. late

Professor of Arabic. Royal 8vo.

“The ‘Select Discourses’ of John Smith,
collected and published from his papers after

his death, are, in my opinion, much the most
considerable work left to us by this Cambridge
School [the Cambridge Platonists]. They have
a right to a place in English literary history.”

—Mr Matthew Arnold, in the Contempo-
rary Review.

“Of all the products of the Cambridge
School, the ‘Select Discourses’ are perhaps

the highest, as they are the most accessible

and the most widely appreciated...and indeed

no spiritually thoughtful mind can read them
unmoved. They carry us so directly into an
atmosphere of divine philosophy, luminous

7i-. 6^.

with the richest lights of meditative genius...

He was one of those rare thinkers in whom
largeness of view, and depth, and wealth of
poetic and speculative insight, only served to

evoke more fully the religious spirit, and while
he drew the mould of his thought from Plotinus,
he vivified the substance of it from St Paul.”

—

Principal Tulloch, Rational Theology in
England in the i.'jth Century.
“We may instance Mr Henry Griffin Wil-

liams’s revised edition of Mr John Smith’s
‘ Select Discourses,’ which have won Mr
Matthew Arnold’s admiration, as an example
of worthy work for an University Press to
undertake.”—Times.

THE HOMILIES, with Various Readings, and the Quo-
tations from the Fathers given at length in the Original Languages.
Edited by G. E. CORRiE, D.D., Master of Jesus College. Demy
8vo. 7J-. ()d.

DE OBLIGATIONE CONSCIENTI^ PR^LECTIONES
decern Oxonii in Schola Theologica habitse a Roberto Sanderson,
SS. Theologise ibidem Professore Regio. With English Notes,

including an abridged Translation, by W. Whewell, D.D. late

Master of Trinity College. Demy 8vo. ^s. 6d.

ARCHBISHOP USHER’S ANSWER TO A JESUIT,
with other Trads on Popery. Edited by J. Scholefield, M.A. late

Regius Professor of Greek in the University. Demy 8vo. 'js. 6d.

London : C. J. Cla y Son, Cambridge University Press Warehouse,
Ave Maria Lane,
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WILSON’S ILLUSTRATION OF THE METHOD OF
explaining the New Testament, by the early opinions of Jews and
Christians concerning Christ. Edited by T. Turton, D.D. late

Lord Bishop of Ely. Demy 8vo. 5^.

LECTURES ON DIVINITY delivered in the University
of Cambridge, by John Hey, D.D. Third Edition, revised by T.

Turton, D.D. late Lord Bishop of Ely. 2 vols. Demy 8vo. 155^.

ARABIC, SANSKRIT AND SYRIAC.
POEMS OF BEHA ED DIN ZOHEIR OF EGYPT.

With a Metrical Translation, Notes and Introduction, by E. H.
Palmer, M.A., Barrister-at-Law of the Middle Temple, late Lord
Almoner’s Professor of Arabic, formerly Fellow of St John’s College,

Cambridge. 2 vols. Crown 4to.

Vol. 1 . The Arabic Text. 10s. 6d.
;
cloth extra. 15J.

Vol. 11 . English Translation. ios.6d.\ cloth extra. 15^.

“We have no hesitation in saying that in

both Prof. Palmer has made an addition to Ori-

ental literature for which scholars should be
grateful ; and that, while his knowledge of
Arabic is a sufficient guarantee for his mastery
of the original, his English compositions are
distinguished by versatility, command of lan-

guage, rhythmical cadence, and, as we have

remarked, by not unskilful imitations of the

styles of several of our own favourite poets,

living and dead.”—Saturday Review.
“ This sumptuous edition of the poems^ of

Beha-ed-dm Zoheir is a very welcome addition

to the small series of Eastern poets accessible

to readers who are not Orientalists.”

—

Aca-
demy.

THE CHRONICLE OF JOSHUA THE STYLITE, com-
posed in Syriac A.D. 507 with an English translation and notes, bj

W. Wright, LL.D., Professor of Arabic. Demy 8vo. 10s. 6d.

“Die lehrreiche kleine Chronik Josuas hat
nach Assemani und Martin in Wright einen
dritten Bearbeiter gefunden, der sich um die

Emendation des Textes wie um die Erklarung
der Realien wesentlich verdient gemacht hat

. . . Ws. Josua-Ausgabe ist eine sehr dankens-
werte Gabe und besonders empfehlenswert als

ein Lehrmittel fur den syrischen Unterricht ; es

erscheint auch gerade zur rechten Zeit, da die

zweite Ausgabe von Roedigers syrischer Chres-
tomathie im Buchhandel vollstandig vergriffen

und diejenige von Kirsch-Bernstein nur noch
in wenigen Exemplaren vorhanden ist.”

—

Detdsche Litteraturzeitung.

KALILAH AND DIMNAH, OR, THE FABLES OF
BIDPAI

;
being an account of their literary history, together with

an English Translation of the same, with Notes, by I. G. N. Keith-
Falconer, M.A., Trinity College, formerly Tyrwhitt’s Hebrew
Scholar. Demy 8vo. ^s. 6d.

NALOPAKHYANAM, or, the tale of NALA;
containing the Sanskrit Text in Roman Characters, followed by a

Vocabulary in which each word is placed under its root, with refer-

ences to derived words in Cognate Languages, and a sketch of

Sanskrit Grammar. By the late Rev. Thomas Jarrett, M.A.
Trinity College, Regius Professor of Hebrew. Demy 8vo. lOi-.

NOTES ON THE TALE OF NALA, for the use of
Classical Students, by J. Peile, M.A., Litt. D., Fellow and Tutor of

Christ’s College. Demy 8vo. 12s.

CATALOGUE OF THE BUDDHIST SANSKRIT
MANUSCRIPTS in the University Library, Cambridge. Edited

by C. Bendall, M.A., Fellow of Gonville and Caius College. Demy
8vO. I2S.

“It is unnecessary to state how the com-
pilation of the present catalogue came to be

placed in Mr Bendall’s hands : from the cha-

racter of his work it is evident the selection

was judicious, and we may fairly congratulate

those concerned in it on the result ... Mr Ben-
dall has entitled himself to the thanks of all

Oriental scholars, and we hope he may have
before him a long course of successful labour in

the field he has chosen.”

—

Athenceum.

London : C. J. Cla v Son, Cambridge University Press Warehouse,
Ave Maria Lane,
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GEEEK AND LATIN CLASSICS, &c. (See also pp. 24-27.)

SOPHOCLES : The Plays and Fragments, with Critical

Notes, Commentary, and Translation in English Prose, by R. C.

JEBB, M.A., LL.D., Professor of Greek in the University of Glasgow.
Part I. Oedipus Tyrannus. Demy 8vo. 15s.

“Of his explanatory and critical notes we,

can only speak with admiration. Thorough
scholarship combines with taste, erudition, and
boundless industry to make this first volume a

pattern of editing. The work is made com-
plete by a prose translation, upon pages alter-

nating with the text, of which we may say

shortly that it displays sound judgment and
taste, without sacrificing precision to poetry of

expression.”—TAe Times.
“This larger edition he has deferred these

many years for reasons which he has given in

his preface, and which we accept with entire

satisfaction, as we have now the first portion

of a work composed in the fulness of his powers
and with all the resources of fine erudition arid

laboriously earned experience. ..We will confi-

dently aver, then, that the edition is neither

tedious nor long; for we get in one compact
volume such a cyclopaedia of instruction, such

a variety of helps to the full comprehension of

the poet, as not so many years ago would have
needed a small library, and all this instruction

and assistance given, not in a dull and pedantic

way, but in a style of singular clearness and

vivacity, In fact, one might take this edition
with him on a journey, and, without any other
help whatever, acquire with comfort and de-
light a thorough acquaintance with the noblest
production of, perhaps, the most difficult of all
Greek poets—the most difficult, yet possessed
at the same time of an immortal charm for one
who has mastered him, as Mr Jebb has, and
can feel so subtly perfection of form and lan-
guage. ..We await with lively expectation the
continuation, and completion of Mr Jebb’s
great task, and it is a fortunate thing that his
power of work seems to be as great as the style
is happy in which the work is done.”—
A thenceia7t.

“An edition which marks a definite ad-
vance, which is whole in itself, and brings a
mass of solid and well-wrought material such
as future constructors will desire to adapt, is

definitive in the only applicable sense of the
term, and such is the edition of Professor Jebb.
No man is better fitted to express in.relation to
Sophocles the mind of the present generation.”— The Saturday Review.

AESCHYLI FABULAK—IKETIAES XOHTOPOJ IN
LIBRO MEDICEO MENDOSE SCRIPTAE EX VV. DD.
CONIECTURIS EMENDATIUS EDITAE cum Scholiis Graecis
et brevi adnotatione critica, curante F. A. Paley, M.A., LL.D.
Demy 8vo. ^s. 6d.

THE AGAMEMNON OF AESCHYLUS. With a Trans-
lation in English Rhythm, and Notes Critical and Explanatory.
New Edition Revised. By Benjamin Hall Kennedy, D.D.,
Regius Professor of Greek. Crown 8vo. 6s.

“ One of the best editions of the masterpiece valub of this volume alike to the poetical
of Greek tragedy.”

—

Athenceum. translator, the critical scholar, and the ethical
“It is needless to multiply proofs of the student.”—Sattirday Review.

THE THE^TETUS OF PLATO with a Translation and
Notes by the same Editor. Crown 8vo. ^s. 6d.

ARISTOTLE.—HEPI ^TXHS. ARISTOTLE’S PSY-
CHOLOGY, in Greek and English, with Introduction and Notes,
by Edwin Wallace, M.A., la

College, Oxford. Demy 8vo. i

“ In an elaborate introduction Mr Wallace
collects and correlates all the passages from the

various works of Aristotle bearing on these

points, and this he does with a width of learn-

ing that marks him out as one of our foremost
Aristotelic scholars, and with a critical acumen
that is far from common.”— Glasgow Herald.

“The notes are exactly what such notes
ought to be,—helps to the student, not mere
displays of learning. By far the more valuable
parts of the notes are neither critical nor lite-

rary, but philosophical and expository of the
thought, and of the connection of thought, in

the treatise itself. In this relation the notes are
invaluable. Of the translation, it may be said

that an English reader may fairly master by
means of it this great treatise of Aristotle.”

—

Spectator.
“ M. Wallace a mis a profit tous les travaux

te Fellow and Tutor of Worcester
%s.

de ses devanciers, et il nous semble avoir
reussi le premier dans ^interpretation de cer-
tains passages qui avaient jusque -la resiste aux
efforts de tous les commentaires.”—Revue Phi-
losophiqtie.

“ Wallace's Bearbeitung der Aristotelischen
Psychologic ist das Werk eines denkenden und
in alien Schriften des Aristoteles und grossten-
teils auch in der neueren Litteratur zu densel-
ben beleseuen Mannes . . . Der schwachste
Teil der Arbeit ist der kritische . . . Aber in
alien diesen Dingen liegt auch nach der Ab-
sicht des Verfassers nicht der Schwerpunkt
seiner Arbeit, sondern ... Und so sei schliess-
lich noch einmal das Ganze von Wallace’s
Arbeit im ganzen genommen als ein wertvolles
Hiilfsmittel fiir das Studium der bearbeiteten
Schrift auf das warmste empfohlen.”—Prof.
Susemihl in Philologische Wochenschrift.

London : C, J . Clay SON, Cambridge University Press Warehouse,
Ave Maria Lane.
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ARISTOTLE.—nEPI AIKAI02TNHX. THE FIFTH
BOOK OF THE NICOMACHEAN ETHICS OF ARISTOTLE.
Edited by Henry Jackson, M.A., Litt. D., Fellow of Trinity College,

Cambridge. Demy 8vo. (iS.

“It is not too much to say that some of the will hope that this is not the only portion of
points he discusses have never had so much the Aristotelian writings which he is likely to

light thrown upon them before. . . . Scholars edit.”

—

Athenaum.

ARISTOTLE. THE RHETORIC. With a Commentary
by the late E. M. Cope, Fellow of Trinity College, Cambridge, re-

vised and edited by J. E. Sandys, M.A., Fellow and Tutor of St John’s
College, Cambridge, and Public Orator. With a biographical Memoir
by H. A.

J'.
Munro, M.A., Litt. D. 3 Vols., Demy 8vo. Now

reduced to 2L. {originally p2iblished at '^is, 6d.)
“This work is in many ways creditable to the “Mr Sandys has performed his arduous

University of Cambridge. If an English student duties with marked ability and admirable tact,

wishes to have a full conception of what is con- ... In every part of his work—revising, sup-
tained in the of Aristotle, to Mr Cope’s plementing, and completing—he has done ex-
edition he must go.”

—

Academy. ceedingly well.”

—

Examiner.

A SELECTION OF GREEK INSCRIPTIONS, with
Introductions and Annotations by E. S. Roberts, M.A. Fellow
and Tutor of Gonville and Caius College. [In the Press.

PINDAR. OLYMPIAN AND PYTHIAN ODES. With
Notes Explanatory and Critical, Introductions and Introductory
Essays. Edited by C. A. M. Fennell, M.A., Litt. D., late Fellow
of Jesus College. Crown 8vo. 9^.

“ Mr Fennell deserves the thanks of all clas- in comparative philology.”

—

A tkeneeum.
sical students for his careful and scholarly edi- ‘

‘ Considered simply as a contribution to the
tion of the Olympian and Pythian odes. He study and criticism of Pindar, Mr Fennell's
brings to his task the necessary enthusiasm for edition is a work of great merit.”

—

Saturday
his author, great industry, a sound judgment, Review.
and, in particular, copious and minute learning

THE ISTHMIAN AND NEMEAN ODES. By the same
Editor. Crown 8vo. qj.

“ ... As a handy and instructive edition of valuable help to the study of the most difficult

a difficult classic no work of recent years sur- of Greek authors, and is enriched with notes
passes Mr Fennell’s ‘Pindar.’”

—

Athenceum. on points of scholarship and etymology which
“This work is in no way inferior to could only have been written by a scholar of

the previous volume. The commentary affords very high attainments.”

—

Saturday Review.

PRIVATE ORATIONS OF DEMOSTHENES, with In-
troductions and English Notes, by F. A. Paley, M.A. Editor of
Aeschylus, etc. and J. E. Sandys, M.A. Fellow and Tutor of St John’s
College, and Public Orator in the University of Cambridge.

Part I. Contra Phormionem, Lacritum, Pantaenetum, Boeotum
de Nomine, Boeotum de Dote, Dionysodorum. Crown 8vo. 6j.

“Mr Paley’s scholarship is sound and literature which bears upon his author, and
accurate, his experience of editing wide, and
if he is content to devote his learning and
abilities to the production of such manuals
as these, they will be received with gratitude

throughout the higher schools of the country.

Mr Sandys is deeply read in the German

the elucidation of matters of daily life, in the
delineation of which Demosthenes is so rich,

obtains full justice at his hands. ... We
hope this edition may lead the way to a more
general study of these speeches in schools
than has hitherto been possible.”

—

Academy.

Part II. Pro Phormione, Contra Stephanum I. II.,• Nicostra-
tum, Cononem, Calliclem. Crown 8vo. "js. 6d.

“ It is long .since we have come upon a work mosthenes ’.”—Saturday Review.
evincing more pains, scholarship, and varied “ the edition reflects credit on
research and illustration than Mr Sandys’s Canibridge scholarship, and ought to be ex-
contribution to the ‘Private Orations of De- tensively used.”

—

Athenaum.

DEMOSTHENES AGAINST ANDROTION AND
AGAINST TIMOCRATES, with Introductions and English Com-
mentary, by William Wayte, M.A., late Professor of Greek, Uni-
versity College, London. Crown 8vo. ^s. 6d.

“There is an excellent introduction to and each paragraph of the text there is a summary
analysis of each speech . . . The notes are uni- of scholarship or with points of Athenian law.”
formly good, whether they deal with questions —Saturday Review.

London : C. J. Clay Son, Cambridge University Piess Warehouse,
Ave Maria Lane.
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THE TYPES OF GREEK COINS. By Percy Gardner,
M.A., F.S.A., Disney Professor of Archaeology. With i6 Autotype
plates, containing photographs of Coins of all parts of the Greek World.
Impl. 4to. Cloth extra, ^i. i \s. 6d.; Roxburgh (Morocco back), £2. 2s.

“Professor Gardner’s book is written with
such lucidity and in a manner so straightfor-

ward that it may well win converts, and it may
be distinctly recommended to that omnivorous
class of readers—‘men in the schools.’ The his-

tory of ancient coins is so interwoven with and
so vividly illustrates the history of ancient States,

that students of Thucydides and Herodotus can-
not afford to neglect Professor Gardner’s intro-

duction to Hellenic numismatics.”

—

Saturday
Review.

‘ The Types of Greek Coins ’ is a work which

is less purely and dryly scientific. Neverthe-
less, it takes high rank as proceeding upon a
truly scientific basis at the same time that it

treats the subject of numismatics in an attrac-

tive style and is elegant enough to justify its

appearance in the drawing-room .... Six-

teen autotype plates reproduce with marvellous
reality more than six hundred types of picked
specimens of coins in every style, from the

cabinets of the British Museum and other col-

lections.—A thenceum.

THE BACCHAE OF EURIPIDES. With Introduction,
Critical Notes, and Archaeological Illustrations, by J. E. Sandys,
M.A., Fellow and Tutor of St John’s College, Cambridge, and Public
Orator. Crown 8vo. io.y. 6d.

“ Of the present edition of the Bacchce by Mr
Sandys we may safely say that never before has
a Greek play, in England at least, had fuller

justice done to its criticism, interpretation,

and archaeological illustration, whether for the
young student or the more advanced scholar.

The Cambridge Public Orator may be said to

have taken the lead in issuing a complete edi-

tion of a Greek play, which is destined perhaps
to gain redoubled favour now that the study of
ancient monuments has been applied to its il-

lustration.”

—

Saturday Review.
“The volume is interspersed with well-

executed woodcuts, and its general attractive-

ness of form reflects great credit on the Uni-
versity Press. In the notes Mr Sandys has more
than sustained his well-earned reputation as a
careful and learned editor, and shows consider-

ESSAYS ON THE ART OF PHEIDIAS. By C. Wald-
STEIN, M.A., Phil. D., Reader in Classical Archaeology in the Uni-
versity of Cambridge. Royal 8vo. With Illustrations. [In the Press.

PLATO’S PH.tEDO, literally translated, by the late E. M.
Cope, Fellow of Trinity College, Cambridge, revised by Henry
Jackson, M.A., Litt. D., Fellow of Trinity College. Demy 8vo. ^s.

M. TULLI CICERONIS DE FINIBUS BONORUM
ET MALORUM LIBRI QUINQUE. The text revised and
explained; With a Translation by James S. Reid, M.L., Litt. D.,

Fellow of Gonville and Caius College. 3 Vols. [hi the Press.

VOL. III. Containing the Translation. Demy 8vo. 8^.

M. T. CICERONIS DE OFFICIIS LIBRI TRES,
with Marginal Analysis, an English Commentary, and copious
Indices, by H. A. Holden, LL.D., late Fellow of Trinity College,
Cambridge. Fifth Edition. Crown 8vo. 9^-.

“Dr Holden has issued an edition of what assumed after two most thorough revisions,
is perhaps the easiest and most popular of leaves little or nothing to be desired in the full-

Cicero’s philosophical works, the de Officiis, ness and accuracy of its treatment alike of the
which, especially in the form which it has now matter and the language.”

—

Academy.

M. TVLLI CICERONIS PRO C RABIRIO [PERDVEL-
LIONIS REO] ORATIO AD QVIRITES With Notes Introduc-
tion and Appendices by W E Heitland MA, Fellow and Lecturer
of St John’s College, Cambridge. Demy 8vo. ^s. 6d.

able advance in freedom and lightness of style.

. . . Under such circumstances it is superfluous
to say that for the purposes of teachers and ad-
vanced students this handsome edition far sur-
passes all its predecessors. ”

—

A thenceum.
“It has not, like so many such books, been

hastily produced to meet the momentary need
of some particular examination

;
but it has em-

ployed for some years the labour and thought
of a highly finished scholar, whose aim seems
to have been that his book should go forth totus
teres atque rotundus, armed at all points with
all that may throw light upon its subject. The
result is a work which will not only assist the
schoolboy or undergraduate in his tasks, but
will adorn the library of the scholar.”

—

The
Guardian.

London : C. J . Cla y Son, Cambridge Unwersity Press Warehouse,

Ave Maria Lane.



12 PUBLICATIONS OF

M. TULLII CICERONIS DE NATURA DEORUM
Libri Tres, with Introduction and Commentary by JOSEPH B.

Mayor, M.A., late Professor of Moral Philosophy at King’s Col-

lege, London, together with a new collation of several of the English

MSS. by J. H. SwAiNSON, M.A., formerly Fellow of Trinity College,

Cambridge. Vol, I. Demy 8vo. loj. 60?. Vol. II. 12s. 6d.

Voi.. III. Nearly ready.
“ Such editions as that of which Prof. Mayor way admirably suited to meet the needs of the

has given us the first instalment will doubtless student . . . The notes of the editor are all that

do much to remedy this undeserved neglect. It could be expected from his well-known learn-

is one on which great pains and much learning ing and scholarship.”

—

Academy.
have evidently been expended, and is in every

P. VERGILI MARONIS OPERA cum Prolegomenis
et Commentario Critico pro Syndicis Preli Academic! edidit Ben-
jamin Hall Kennedy, S.T.P., Graecae Linguae Professor Regius.

Extra Fcap. 8vo. 5^.

MATHEMATICS, PHYSICAL SCIENCE, &c.
MATHEMATICAL AND PHYSICAL PAPERS. By

Sir W. Thomson, LL.D., D.C.L., F.R.S., Professor of Natural Phi-

losophy in the University of Glasgow. Collected from different

Scientific Periodicals from May 1841, to the present time. Vol. 1 .

Demy 8vo. 18^-. Vol. IL 15^. [Volume III. In the Press.
Twenty years“ Wherever exact science has found a fol-

lower Sir William Thomson’s name is known as

a leader and a master. For a space of 40 years
each of his successive contributions to know-
ledge in the domain of experimental and mathe-
matical physics has been recognized as marking
a stage in the progress of the subject. But, un-
happily for the mere learner, he is no writer of

text- books. His eager fertility overflows into

the nearest available journal . . . The papers in

this volume deal largely with the subject of the

dynamics of heat. They begin with two or

three articles which were in part written at the

age of 17, before the author had commenced
residence as an undergraduate in Cambridge,
. , . No student of mechanical engineering,

who aims at the higher levels jof his profession,

can afford to be ignorant of the principles and
methods set forth in these great memoirs . . .

The article on the absolute measurement of

electric and galvanic quantities (1851) has

MATHEMATICAL AND

borne rich and abundant fruit,

after its date the International Conference of
Electricians at Paris, assisted by the author
himself, elaborated and promulgated a series of
rules and units which are but the detailed out-

come of the principles laid down in these

papers.”— The Times.
“We are convinced that nothing has had a

greater effect on the progress of the theories of

electricity and magnetism during the last ten

years than the publication of Sir W. Thomson’s
reprint of papers on electrostatics and magnet-
ism, and we believe that the present volume is

destined in no less degree to further the ad-
vancement of physical science. We owe the
modern dynamical theory of heat almost wholly
to Joule and Thomson, and Clausius and Ran-
kine, and we have here collected together the
whole of Thomson’s investigations on this sub-
ject, together with the papers published jointly

by himself and Joule.”—Glasgow Herald.

PHYSICAL PAPERS, by
George Gabriel Stokes, M.A., D.C.L., LL.D., F.R.S., Fellow of

Pembroke College, and Lucasian Professor of Mathematics in the

University of Cambridge. Reprinted from the Original Journals and
Transactions, with Additional Notes by the Author. Vol. 1 . Demy
8vo. 15J. Vol. II. 15^-. [Volume III. In the Press.
The volume of Professor Stokes’s papers necessary, dissertations. There nothing is

slurred over, nothing extenuated. We learn

exactly the weaknesses of the theory, and
contains much more than his hydrodynamical
papers. The undulatory theory of light is

treated, and the difficulties connected with its

application to certain phenomena, such as aber-

ration, are carefully examined and resolved.

Such difficulties are commonly passed over with

scant notice in the text-books . . . Those to

whom difficulties like these are real stumbling-

blocks will still turn for enlightenment to Pro-

fessor Stokes’s old, but still fresh and still

the direction in which the completer theory of
the future must be sought for. The same spirit

pervades the papers on pure mathematics which
are included in the volume. They have a severe
accuracy of style which well befits the subtle
nature of the subjects, and inspires the com-
pletest confidence in theirauthor.”— Times.

THE SCIENTIFIC PAPERS OF THE LATE PROF.
J. CLERK MAXWELL. Edited by W. D. Niven, M.A. In 2 vols.

Royal 4to. \In the Press.

London : C, y. Cla y dr® Son., Cambridge University Press Warehouse^
Ave Maria Lane.
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A TREATISE ON NATURAL PHILOSOPHY. By
Sir W. Thomson, LL.D., D.C.L., F.R.S., Professor of Natural
Philosophy in the University of Glasgow, and P. G. Tait, M.A.,
Professor of Natural Philosophy in the University of Edinburgh.
Part I. Demy 8vo. i6j. Part II. Demy 8vo. iSs.

“ In this, the second edition, we notice a form within the time at our disposal would be
large amount of new matter, the importance of utterly inadequate.”

—

J>iaiure.

which is such that any opinion which we could

ELEMENTS OF NATURAL PHILOSOPHY. By Pro-
fessors Sir W. Thomson and P. G. Tait. Part I. Demy 8vo.

Second Edition, (^s.

A SHORT HISTORY OF GREEK MATHEMATICS.
By J. Gow, M.A., Fellow of Trinity College. Demy 8vo. loj. 6^.

A TREATISE ON THE THEORY OF DETERMI-
NANTS AND THEIR APPLICATIONS IN ANALYSIS AND
GEOMETRY, by Robert Forsyth Scott, M.A., of St John’s
College, Cambridge. Demy 8vo. 12s.

“ This able and comprehensive treatise will searches on this subject which have hitherto
be welcomed by the student as bringing within been for the most part inaccessible to him.”

—

his reach the results of many important re- Athencetim.

HYDRODYNAMICS, a Treatise on the Mathematical
Theory of the Motion of Fluids, by Horace Lamb, M.A., formerly
Fellow of Trinity College, Cambridge; Professor of Mathematics in

the University of Adelaide. Demy 8vo. 12s.

THE ANALYTICAL THEORY OF HEAT, by Joseph
Fourier. Translated, with Notes, by A. Freeman, M.A., Fellow
of St John’s College, Cambridge. Demy 8vo. i 6s.

“ It is time that Fourier’s masterpiece, The
Analytical Theory of Heat, translated by Mr
Alex. Freeman, should be introduced to those
English students of Mathematics who do not
follow with freedom a treatise in any language
but their own. It is a model of mathematical
reasoning applied to physical phenomena, and
is remarkable for the ingenuity of the analytical

process employed by the author. ”

—

Contempo-
rary Review, October, 1878.

“There cannot be two opinions as to the
value and importance of the Theorie de la Cha-
leur ... It is still the text-book of Heat Con-
duction, and there seems little present prospect
of its being superseded, though it is already
more than half a century old.”

—

Nature.

THE ELECTRICAL RESEARCHES OF THE Honour-
able Henry Cavendish, F.R.S. Written between 1771 and 1781.

Edited from the original manuscripts in the possession of the Duke
of Devonshire, K. G., by the late J. Clerk Maxwell, F.R.S.
Demy 8vo. i8j-.

“Every department of editorial duty ap- faction to Prof. Maxwell to see this goodly
pears to have been most conscientiously per- volume completed before his life’s work was
formed; and it must have been no small satis- done.”

—

Athenceum.

An elementary TREATISE on QUATERNIONS.
By P. G. Tait, M.A., Professor of Natural Philosophy in the Uni-
versity of Edinburgh. Second Edition. Demy 8vo. I4J-.

THE MATHEMATICAL WORKS OF ISAAC BAR-
ROW, D.D. Edited by W. Whewell, D.D. Demy 8vo. ^s. 6d.

AN ATTEMPT TO TEST THE THEORIES OF
CAPILLARY ACTION by Francis Bashforth, B.D., late Pro-
fessor of Applied Mathematics to the Advanced Class of Royal
Artillery Officers, Woolwich, and J. C. Adams, M.A., F.R.S.
Demy 4to. £1. li-.

NOTES ON QUALITATIVE ANALYSIS. Concise and
Explanatory. By H. J. H. Fenton, M.A., F.I.C., F.C.S., Demon-
strator of Chemistry in the Universityfof Cambridge. Cr. 4to. ys. 6d.

London : C. J. Cla y Sr* Son., Cambridge University Press Warehouse,
Ave Maria Lane.,



PUBLICATIONS OFH

A TREATISE ON THE GENERAL PRINCIPLES OF
CHEMISTRY, by M. M. Pattison Muir, M.A,, Fellow and Prae-

lector in Chemistry of Gonville and Cains College. Demy 8vo. 15^,
“Properly to review this excellent book on pages, I might quote the Preface in its en-

philosophical chemistry 1 should have to ask tirety, and give a prScis of the table of con-
for half-a-dozen pages of the Academy. To tents . . . The value of the book as a digest of
give a notion of its scope and of its treatment the historical developments of chemical thought
of the important topics discussed in its 470 is immense.”

—

Academy.

A TREATISE ON THE PHYSIOLOGY OF PLANTS,
by S. H. Vines, M.A., Fellow of Christ’s College. {Nearly ready.

THE FOSSILS AND PALAEONTOLOGICAL AFFIN-
ITIES OF THE NEOCOMIAN DEPOSITS OF UPWARE
AND BRICKHILL with Plates, being the Sedgwick Prize Essay
for the Year 1879. By W. Keeping, M.A., F.G.S. Demy 8vo. loj. (id.

A CATALOGUE OF BOOKS AND PAPERS ON PRO-
TOZOA, CCELENTERATES, WORMS, and certain smaller groups
of animals, published during the years 1861— 1883, by D’Arcy W.
Thompson, B.A., Scholar of Trinity College, Cambridge.

Ifi the Press.

COUNTERPOINT. A Practical Course of Study, by Pro-
fessor Sir G. A. Macfarren, M.A., Mus. Doc. Fifth Edition,

revised. Demy 4to. 'js. 6d.

ASTRONOMICAL OBSERVATIONS made at the Obser-
vatory of Cambridge by the late Rev. James Challis, M.A., F.R.S.,

F.R.A.S. For various Years, from 1846 to i860.

ASTRONOMICAL OBSERVATIONS from 1861 to 1865.
Vol. XXL Royal 4to. IS^-. From 1866 to 1869. Vol. XXI I

.

Royal 4to. {Nearly ready.

A CATALOGUE OF THE COLLECTION OF BIRDS
formed by the late H. E. Strickland, now in the possession of the

University of Cambridge. By O. Salvin, M.A. Demy 8vo. £\. is.

“The discriminating notes which Mr Salvin
_

“The author has formed a definite and, as

has here and there introduced make the book it seems to us, a righteous idea of what the

indispensable to every worker on what the catalogue of a collection should be, and, allow-

Americans call “the higher plane” of the ing for some occasional slips, has effectively

science of birds.”

—

Academy. carried it out.”

—

Notes and Queries.

A CATALOGUE OF AUSTRALIAN FOSSILS (in-

cluding Tasmania and the Island of Timor), Stratigraphically and
Zoologically arranged, by R. Etheridge, Jun., F.G.S.

,
Acting Palae-

ontologist, H.M. Geol. Survey of Scotland. Demy 8vo. loj. 6d.
“Theworkisarranged with great clearness, consulted by the author, and an index to the

and contains a full list of the books and papers genera.”

—

Saturday Review.

ILLUSTRATIONS OF COMPARATIVE ANATOMY,
VERTEBRATE AND INVERTEBRATE, for the Use of Stu-

dents in the Museum of Zoology and Comparative Anatomy. Second
Edition. Demy 8vo. 'zs. 6d.

A SYNOPSIS OF THE CLASSIFICATION OF THE
BRITISH PALAEOZOIC ROCKS, by the Rev. Adam Sedgwick,
M.A., F.R.S., and Frederick M^Coy, F.G.S. One vol. Royal 4to.

Plates, £1. IS.

A CATALOGUE OF THE COLLECTION OF CAM-
BRIAN AND SILURIAN FOSSILS contained in the Geological

Museum of the University of Cambridge, by J. W. Salter, F.G.S.

With a Portrait of PROFESSOR Sedgwick. Royal 4to. 7s. 6d.

CATALOGUE OF OSTEOLOGICAL SPECIMENS con-

tained in the Anatomical Museum of the University of Cambridge.

Demy 8vo. 2s. 6d.

Londo7i : C. J. Cla Y Son, Cambridge University Press JVarehonse,

Ave Maria Lane.
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LAW.
AN ANALYSIS OF CRIMINAL LIABILITY. By E. C.

Clark, LL.D., Regius Professor of Civil Law in the University of Cam-
bridge, also of Lincoln’s Inn, Barrister-at-Law, Crown 8vo. ^s. 6d.

“Prof. Clark’s little book is the substance Students of jurisprudence will find much to
of lectures delivered by him upon those por- interest and instruct them in the work of Prof,
tions of Austin’s work on jurisprudence which Clark.”

—

Athenceum.
deal with the “operation of sanctions” . . .

PRACTICAL JURISPRUDENCE, a Comment on Austin.
By E. C. Clark, LL.D. Regius Professor of Civil Law. Crown
8vo. 9^-.

“Damit schliesst dieses inhaltreiche und deal Jurisprudence.”

—

K-ovag. Centralblattfur
nach alien Seiten anregende Buch fiber Prac- Rechtswissenschaft.

A SELECTION OF THE STATE TRIALS. By J. W.
Willis-Bund, M.A., LL.B., Barrister-at-Law, Professor of Con-
stitutional Law and History, University College, London. Crown
8vo. Vols. 1 . and 11 . In 3 parts. Now reduced to 30j-. {originally

published at 46^'.)

“Mr Willis-Bund has edited ‘A Selection of
Cases from the State Trials’ which is likely to

form a very valuable addition to the standard
literature . . . There can be no doubt, therefore,

of the interest that can be found in the State
trials. But they are large and unwieldy, and it

is impossible for the general reader to come
across them. Mr Willis-Bund has therefore

done good service in making a selection that

is in the first volume reduced to a commodious
form.”

—

The Examiner.
“This work is a very useful contribution to

that important branch of the constitutional his-

tory of England which is concerned with the
growth and development of the law of treason,

as it may be gathered from trials before the

ordinary courts. The author has very wisely
distinguished these cases from those of im-
peachment for treason before Parliament, which
he proposes to treat in a future volume under
the general head ‘ Proceedings in Parliament.’”
— The Academy.

“ This is a work of such obvious utility that

the only wonder is that no one should have un-
dertaken it before ... In many respects there-

fore, although the trials are more or less

abridged, this is for the ordinary student’s pur-

pose not only a more handy, but a more useful

Vol. III. In the Press.

work than Howell’s.”—Saturday Review.
“ But, although the book is most interesting

to the historian of constitutional law, it is also
not without considerable value to those who
seek information with regard to procedure and
the growth of the law of evidence. We should
add that Mr Willis-Bund has given short pre-
faces and appendices to the trials, so as to form
a connected narrative of the events in history
to which they relate. We can thoroughly re-

commend the book. ”—Law Times.
“To a large class of readers Mr Willis-

Bund’s compilation will thus be of great as-
sistance, for he presents in a convenient form a
judicious selection of the principal statutes and
the leading cases bearing on the crime of trea-
son ... For all classes of readers these volumes
possess an indirect interest, arising from the
nature of the cases themselves, from the men
who were actors in them, and from the numerous
points of social life which are incidentally illus-

trated in the course of the trials. On these
features we have not dwelt, but have preferred
to show that the book is a valuable contribution
to the study of the subject with which it pro-
fesses to deal, namely, the history of the law of
treason.”—A thenceum.

THE FRAGMENTS OF THE PERPETUAL EDICT
OF SALVIUS JULIANUS, collected, arranged, and annotated by
Bryan Walker, M.A., LL.D., Law Lecturer of St John’s College, and
late Fellow of Corpus Christ! College, Cambridge. Crown 8vo. 6s.

“ In the present book we have the fruits of

the same kind of thorough and well-ordered
study which was brought to bear upon the notes

to the Commentaries and the Institutes . . .

Hitherto the Edict has been almost inac-

cessible to the ordinary English student, and

such a student will be interested as well as per-
haps surprised to find how abundantly the ex-
tant fragments illustrate and clear up points
which have attracted his attention in the Com-
mentaries, or the Institutes, or the Digest.”

—

Law Times.

London : C. J. Cla v Son, Cambridge University Press Warehouse^
A.ve Maria Lane,



i6 PUBLICATIONS OF

AN INTRODUCTION TO THE STUDY OF JUS-
TINIAN’S DIGEST. Containing an account of its composition
and of the Jurists used or referred to therein, together with a full

Commentary on one Title (de usufructu), by Henry John Roby, M.A.,
formerly Classical Lecturer in St John’s College, Cambridge, and
Prof, of Jurisprudence, University College, London. Demy 8vo. i8j.

“Not an obscurity, philological, historical,

or legal, has been left unsifted. More inform-

ing aid still has been supplied to the student of

the Digest at large by a preliminary account,
covering nearly 300 pages, of the mode of
composition of the Digest, and of the jurists

whose decisions and arguments constitute its

substance. Nowhere else can a clearer view
be obtained of the personal succession by which
the tradition of Roman legal science was sus-

tained and developed. Roman law, almost
more than Roman legions, was the backbone
of the Roman commonwealth. Mr Roby, by
his careful sketch of the sages of Roman law,
from Sextus Papirius, under Tarquin the
Proud, to the Byzantine Bar, has contributed to

render the tenacity and durability of the most
enduring polity the world has ever experienced
somewhat more intelligible .”— The Times.

THE COMMENTARIES OF GAIUS AND RULES OF
ULPIAN. (New Edition, revised and enlarged.) With a Trans-
lation and Notes, by J. T. Abdy, LL.D., Judge of County Courts,

late Regius Professor of Laws in the University of Cambridge, and
Bryan Walker, M.A., LL.D., Law Lecturer of St John’s College,

Cambridge, formerly Law Student of Trinity Hall and Chancellor’s

Medallist for Legal Studies. Crown 8vo. ibj-.

“As scholars and as editors Messrs Abdy way of reference or necessary explanation,

and Walker have done their work well . . . For Thus the Roman jurist is allowed to speak for

one thing the editors deserve special commen- himself, and the reader feels that he is really

dation. They have presented Gains to the studying Roman law in the original, and not a

reader with few notes and those merely by fanciful representation of it.”

—

Athenceuni

THE INSTITUTES OF JUSTINIAN, translated with
Notes by J. T. Abdy, LL.D., Judge of County Courts, late Regius
Professor of Laws in the University of Cambridge, and formerly

Fellow of Trinity Hall; and Bryan Walker, M.A., LL.D., Law
Lecturer of St John’s College, Cambridge

;
late Fellow and Lecturer

of Corpus Christ! College
;
and formerly Law Student of Trinity

Hall. Crown 8vo. i6j.

“We welcome here a valuable contribution

to the study of jurisprudence. The text of the

Institutes is occasionally perplexing, even to

practised scholars, whose knowledge of clas-

sical models does not always avail them in

dealing with the technicalities of legal phrase-

ology. Nor can the ordinary dictionaries be

expected to furnish all the help that is wanted.

This translation will then be of great use. To

SELECTED TITLES FROM THE DIGEST, annotated
by B. Walker, M.A., LL.D. Part L Mandati vel Contra. Digest
xvil. I. Crown 8vo. 5

^-.

“This small volume is published as an ex- Mr Walker deserves credit for the way in which
periment. The author proposes to publish an he has performed the task undertaken. The
annotated edition and translation of several translation, as might be expected, is scholarly.”

books of the Digest if this one is received with —Law Thnes.

favour. We are pleased to be able to say that

Part 11 . De Adquirendo rerum dominio and De Adquirenda vel

amittenda possessione. Digest XLI. i and ii. Crown 8vo. 6j.

^ Part III. De Condictionibus. Digest xii. i and 4—7 and Digest
XIII. I— 3. Crown 8vo. 6j.

GROTIUS DE JURE BELLI ET PACIS, with the Notes
of Barbeyrac and others

;
accompanied by an abridged Translation

of the Text, by W. Whewell, D.D. late Master of Trinity College.

3 Vols. Demy 8vo. 12s. The translation separate, 6s.

the ordinary student, whose attention is dis-
tracted from the subject-matter by the dif-

ficulty of struggling through the language in
which it is contained, it will be almost indis-
pensable. ”

—

Spectator.
“ The notes are learned and carefully com-

piled, and this edition will be found useful to
students.”—Law Times.

Lo7idon : C. J. Cla v ^ Son, Cambridge University Press Warehotise,

Ave Maria Lane,
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HISTOEY.

LIFE AND TIMES OF STEIN, OR GERMANY AND
PRUSSIA IN THE NAPOLEONIC AGE, by J. R. Seeley,
M.A., Regius Professor of Modern History in the University of

Cambridge, with Portraits and Maps. 3 Vols. Demy 8vo. Now
reduced to SOv?. {priginally published at 48i’,)

“ Dr Busch’s volume has made people think
and talk even more than usual of Prince Bis-

marck, and Professor Seeley’s very learned work
on Stein will turn attention to an earlier and an
almost equally eminent German statesman. It

has been the good fortune of Prince Bismarck
to help to raise Prussia to a position which she
had never before attained, and to complete the

work of German unification. The frustrated

labours of Stein in the same field were also

very great, and well worthy to be taken into

account. He was one, perhaps the chief, of

the illustrious group of strangers who came to

the rescue of Prussia in her darkest hour, about
the time of the inglorious Peace of Tilsit, and
who laboured to put life and order into her
dispirited army, her impoverished finances, and
her inefficient Civil Service. Stein strove, too,

—no man more,—for the cause of unification

when it seemed almost folly to hope for suc-
cess. Englishmen will feel very pardonable
pride at seeing one of their countrymen under-
take to write the history of a period from the
investigation of which even laborious Germans
are apt to shrink.”-

—

Times.
“ In a notice of this kind scant justice can

be done to a work like the one before us ; no
short resume can give even the most meagre

notion of the contents of these volumes, which
contain no page that is superfluous, and none
that is uninteresting .... To understand the
Germany of to-day one must study the Ger-
many of many yesterdays, and now that study
has been made easy by this work, to which no
one can he.sitate to assign a very high place
among those recent histories which have aimed
at original research.”

—

Athenceum.
“The book before us fills an important gap

in English—nay, European—historical litera-

ture, and bridges over the history of Prussia
from the time of Frederick the Great to the
days of Kaiser Wilhelm. It thus gives the
reader standing ground whence he ma5' regard
contemporary events in Germany in their pro-
er historic light . . . We congratulate Cam-
ridge and her Professor of History on the

appearance of such a noteworthy production.
And we may add that it is something upon
which we may congratulate England that on
the especial field of the Germans, history, on
the history of their own country, by the use of
their own literary weapons, an Englishman has
produced a history of Germany in the Napo-
leonic age far superior to any that exists in
German. ”

—

Examiner.

THE GROWTH OF ENGLISH INDUSTRY AND
COMMERCE. By W. Cunningham, M.A., late Deputy to the
Knightbridge Professor in the University of Cambridge. With
Maps and Charts. Crown 8vo. 12^.

“He is, however, undoubtedly sound in the

main, and his work deserves recognition as the

result of immense industry and research in a
field in which the labourers have hitherto been

to disap-

point any readers except .such as begin by mis-
taking the character of his book. He does not
promise, and does not give, an account of the

comparatively few. Scots7nan.
“ Mr Cunningham is not likely

dimensions to which English industry and com-
merce have grown. It is with the process of
growth that he is concerned ; and this process
he traces with the philosophical insight which
distinguishes between what is important and
what is trivial. He thus follows with care,
skill, and deliberation a single thread through
the maze of general English history.”

—

Guar-
dian.

THE UNIVERSITY OF CAMBRIDGE FROM THE
EARLIEST TIMES TO THE ROYAL INJUNCTIONS OF
1535, by James Bass Mullinger, M.A. Demy 8vo. (734 pp.j, 12s.

“We trust Mr Mullinger will yet continue
his history and bring it down to our own day.”—Academy,

“ He has brought together a mass of in-

structive details respecting the rise and pro-

gress, not only of his own University, but of

all the principal Universities of the Middle
Ages . . . We hope some day that he may con-

tinue his labours, and give us a history of the
University during the troublous times of the
Reformation and the Civil War.”

—

Athenceum.
“ Mr Mullinger’ s work is one of great learn-

ing and research, which can hardly fail to
become a standard book of reference on the
subject . . . We can most strongly recommend
this book to our readers.”

—

Spectator.

Part 11 . From the Royal Injunctions of 1535 to the Accession of
Charles the First. Demy 8vo. iSj.

pondon : C. J. Clay ^ Son, Cambridge University Press Warehouse,
Ave Maria Lane.
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CHRONOLOGICAL TABLES OF GREEK HISTORY.
Accompanied by a short narrative of events, with references to the
sources of information and extracts from the ancient authorities, by
Carl Peter. Translated from the German by G. Chawner,
M.A., Fellow and Lecturer of King’s College, Cambridge. Demy
4to. los.

“As a handy book of reference for genuine ticular point as quickly as possible, the Tables
students, or even for learned men who want to are useful.”

—

Academy.
lay their hands on an authority for some par-

CHRONOLOGICAL TABLES OF ROMAN HISTORY.
By the same. {Preparing.

HISTORY OF THE COLLEGE OF ST JOHN THE
EVANGELIST, by Thomas Baker, B.D., Ejected Fellow. Edited
by John E. B. Mayor, M.A., Fellow of St John’s. Two Vols
Demy 8vo. 24.?.

“To antiquaries the book will be a source
of almost inexhaustible amusement, by his-

torians it will be found a work of considerable
service on questions respecting our social pro-

gress in past times ; and the care and thorough-
ness with which Mr Mayor has discharged his

editorial functions are creditable to his learning
and industry.”

—

Athenceum.

“The work displays very wide reading, and
it will be of great use to members of the col-

lege and of the university, and, perhaps, of
still greater use to students of English his-

tory, ecclesiastical, political, social, literary

and academical, who have hitherto had to be
content with ‘Dyer.’”

—

Academy.

HISTORY OF NEPAL, translated by MUNSHI SHEW
Shunker Singh and Pandit Shri Gunanand; edited with an
Introductory Sketch of the Country and People by Dr D. Wright,
late Residency Surgeon at Kathmandu, and with facsimiles of native
drawings, and portraits of Sir JUNG Bahadur, the King of Nepal,
&c. Super-royal 8vo. Now reduced to IOj". M. {originally pub-
lished at 21^.)

“The Cambridge University Press have
done well in publishing this work. Such trans-

lations are valuable not only to the historian

but also to the ethnologist; . . . Dr Wright’s
Introduction is based on personal inquiry and
observation, is written intelligently and can-

didly, and adds much to the value of the

volume. The coloured lithographic plates are
interesting. ”

—

Nature.
“The history has appeared at a very op-

portune moment...The volume. ..is beautifully
printed, and supplied with portraits of Sir Jung
Bahadoor and others, and with excellent
coloured sketches illustrating Nepaulese archi-
tecture and religion.”

—

Examiner

SCHOLAE ACADEMICAE : some Account of the Studies
at the English Universities in the Eighteenth Century. By Chris-
topher Wordsworth, M.A., Fellow of Peterhouse

;
Author of

“ Social Life at the English Universities in the Eighteenth Century.”
Demy 8vo. Now reduced to IOj. 6t/. {originally published at 15J.)

“The general object of Mr Wordsworth’s
book is sufficiently apparent from its title. He
has collected a great quantity of minute and
curious information about the working of Cam-
bridge institutions in the last century, with an
occasional comparison of the corresponding
state of things at Oxford ... To a great extent

it is purely a book of reference, and as such it

will be of permanent value for the historical

knowledge of Engli.sh education and learning.”

—Satujhay Review.

“Only those who have engaged in like la-

bours will be able fully to appreciate the
sustained industry and conscientious accuracy
discernible in every page ... Of the whole
volume it may be said that it is a genuine
service rendered to the study of University
history, and that the habits of thought of any
writer educated at either seat of learning in

the last century will, in many cases, be far
better understood after a consideration of the
materials here collected.”

—

Academy.

THE ARCHITECTURAL HISTORY OF THE UNI-
VERSITY AND COLLEGES OF CAMBRIDGE, by the late

Professor Willis, M.A. With numerous Maps, Plans, and Illustra-

tions. Continued to the present time, and edited by John Willis
Clark, M.A., formerly Fellow of Trinity College, Cambridge.

{Nearly ready.

Loncton : C. J. ClA v ^ Son, Cambridge University Press Warehouse,
Ave Maria Lane.
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MISCELLANEOUS.
A CATALOGUE OF ANCIENT MARBLES IN GREAT

BRITAIN, by Prof. Adolf Michaelis. Translated by C. A- M.
Fennell, M.A., late Fellow of Jesus College. Royal 8vo. Roxburgh
(Morocco back), £'i. 2s.

“The object of the present work of Mich-
aelis is to describe and make known the vast

treasures of ancient sculpture now accumulated
in the galleries of Great Britain, the extent and
value of which are scarcely appreciated, and
chiefly so because there has hitherto been little

accessible information about them. To the
loving labours of a learned German the owners
of art treasures in England are for the second
time indebted for a full description of their rich

possessions. Waagen gave to the private col-

lections of pictures the advantage of his in-

spection and cultivated acquaintance with art,

and now Michaelis performs the same office

for the still less known private hoards of an-
tique sculptures for which our country is so

remarkable. The book is beautifully executed,
and with its few handsome plates, and excel-

lent indexes, does much credit to the Cam-
bridge Press. It has not been printed in

German, but appears for the first time in the
English translation. All lovers of true art and
of good work should be grateful to the Syndics
of the University Press for the liberal facilities

afforded by them towards the production of
this important volume by Professor Michaelis.”
—Saturday Review.

“‘Ancient Marbles’ here mean relics of
Greek and Roman origin which have been
imported into Great Britain from classical

soil. How rich this island is in respect to
these remains of ancient art, every one knows,
but it is equally well known that these trea-
sures had been most inadequately described
before the author of this work undertook the
labour of description. Professor Michaelis has
achieved so high a fame as an authority in
classical archaeology that it seems unneces-
sary to say how good a book this is.”— The
Antiquary.

LECTURES ON TEACHING, delivered in the University
of Cambridge in the Lent Term, 1880. By J. G. Fitch, M.A., Her
Majesty’s Inspector of Schools.

“The lectures will be found most interest-

ing, and deserve to be carefully studied, not
only by persons directly concerned with in-

struction, but by parents who wish to be able

to exercise an intelligent judgment in the

choice of schools and teachers for their chil-

dren. For ourselves, we could almost wish to

be of school age again, to learn history and
geography from some one who could teach

them after the pattern set by Mr Fitch to his

audience . . . But perhaps Mr Fitch’s observa-

tions on the general conditions of school-work
are even more important than what he says on
this or that branch of study.”

—

Sahirday Re-
view.

“It comprises fifteen lectures, dealing with
such subjects as organisation, discipline, ex-
amining, language, fact knowledge, science,

and methods of instruction
;
and though the

lectures make no pretention to systematic or

exhaustive treatment, they yet leave very little

of the ground uncovered ;
and they combine in

an admirable way the exposition of sound prin-

ciples with practical suggestions and illustra-

tions which are evidently derived from wide
and varied experience, both in teaching and in

examining.”—

Crown 8vo. New Edition. 5.$-.

“As principal of a training college and as a
Government inspector of schools, Mr Fitch has
got at his fingers’ ends the working of primary
education, while as assistant commissioner to
the late Endowed Schools Commission he has
seen something of the machinery of our higher
schools . . . Mr Fitch’s book covers so wide a
field and touches on so many burning questions
that we must be content to recommend it as
the best existing vade mecum for the teacher.
. . . He is always sensible, always judicious,
never wanting in tact . . . Mr Fitch is a scholar

;

he pretends to no knowledge that he does not
possess ; he brings to his work the ripe expe-
rience of a well-stored mind, and he possesses
in a remarkable degree the art of exposition.”
—Pall Mall Gazette.

“Therefore, without reviewing the book for
the second time, we are glad to avail ourselves
of the opportunity of calling attention to the
re-issue of the volume in the five-shilling form,
bringing it within the reach of the rank and
file of the profession. We cannot let the oc-
casion pass without making .special reference to
the excellent section on ‘punishments’ in the
lecture on ‘Discipline.’”

—

SchoolBoard Chron-
icle.

THEORY AND PRACTICE OF TEACHING. By the
Rev. Edward Thring, M.A., Head Master of Uppingham School,
late Fellow of King’s College, Cambridge. Crown 8vo. 6^-.

“Any attempt to summarize the contents of

the volume would fail to give our readers a
taste of the pleasure that its perusal has given
us.”

—

Jourfial oj Education.
“In his book we have something very dif-

ferent from the ordinary work on education.
It is full of life. It comes fresh from the busy
workshop of a teacher at once practical and
enthusiastic, who has evidently taken up his

pen, not for the sake of writing a book, but

under the compulsion of almost passionate
earnestness, to give expression to his views
on questions connected with the teacher’s life

and work. For suggestiveness and clear in-

cisive statement of the fundamental problems
which arise in dealing with the minds of chil-

dren, we know of no more useful book for any
teacher who is willing to throw heart, and
conscience, and honesty into his work.”

—

New
York Evening Post.

London : C. J. Cla v Son, Cambridge University Press Warehouse,
Ave Maria Lane,
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STATUTES OF THE UNIVERSITY OF CAMBRIDGE
and for the Colleges therein, made published and approved (1878

—

1882) under the Universities of Oxford and Cambridge Act, 1877.
With an Appendix. Demy 8vo. ibj-.

GRADUATI CANTABRIGIENSES : SIVE CATA-
LOGUS exhibens nomina eorum quos ab Anno Academico Admis-
sionum MDCCC usque adoctavum diem Octobris MDCCCLXXXIV
gradu quocunque ornavit Academia Cantabrigiensis, e libris sub-

scriptionum desumptus. Cura Henrici Richards Luard S. T. P.

Coll. SS. Trin. Socii atque Academiae Registrarii. Demy 8vo. 12s. 6d.

THE WOODCUTTERS OF THE NETHERLANDS
during the last quarter of the Fifteenth Century. In three parts.

I. History of the Woodcutters. II. Catalogue of their Woodcuts.
III. List of the Books containing Woodcuts. By William Martin
Conway. Demy 8vo. 105“. 6d.

THE DIPLOMATIC CORRESPONDENCE OF EARL
GOWER, English Ambassador at the court of Versailles from June
1790 to August 1792. From the originals in the Record Office with
an introduction and Notes, by O. BROWNING, M.A. \In the Press.

A GRAMMAR OF THE IRISH LANGUAGE. By Prof.

WINDISCH. Translated by Dr Norman Moore. Crown 8vo. 'js. 6d.

STATUTES OF THE UNIVERSITY OF CAMBRIDGE.
With some Acts of Parliament relating to the University. Demy
8vo. 3J-. 6d.

ORDINANCES OF THE UNIVERSITY OF CAM-
BRIDGE. Demy 8vo., cloth, js. 6d.

TRUSTS, STATUTES AND DIRECTIONS affecting

(i) The Professorships of the University. (2) The Scholarships
and Prizes. (3) Other Gifts and Endowments. Demy 8vo. 5^.

COMPENDIUM OF UNIVERSITY REGULATIONS,
for the use of persons in Statu Pupillari. Demy 8vo. 6d

CATALOGUE OF THE HEBREW MANUSCRIPTS
preserved in the University Library, Cambridge. By Dr S. M.
Schiller-Szinessy. Volume 1 . containing Section I. The Holy
Scriptures

;

Section il. Coinmentm'ies on the Bible. Demy 8vo. 95-.

Volume II. hi the Press.

A CATALOGUE OF THE MANUSCRIPTS preserved
in the Library of the University of Cambridge. Demy 8vo. 5 Vols.

loj. each.

INDEX TO THE CATALOGUE. Demy 8vo. io.y.

A CATALOGUE OF ADVERSARIA and printed books
containing MS. notes, preserved in the Library of the University of

Cambridge. 3^“. (id.

THE ILLUMINATED MANUSCRIPTS IN THE LI-
BRARY OF THE FITZWILLIAM MUSEUM, Catalogued with

Descriptions, and an Introduction, by William George Searle,
M.A., late Fellow of Queens’ College, and Vicar of Hockington,
Cambridgeshire. Demy 8vo. yj-. (d.

A CHRONOLOGICAL LIST OF THE GRACES,
Documents, and other Papers in the University Registry which
concern the University Library. Demy 8vo. 2s. 6d.

CATALOGUS BIBLIOTHECAE BURCKHARDTIANaE.
Demy 4to. Ss.

London : C. J. Cla y (s-* Son, Cambridge University Press Warehouse,^

Ave Maria Lane,,
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€’be Cambn'Bge 35iblc for ^tftools anil

Colleges.

General Editor : The Very Reverend J. J. S. Perowne, D.D.,

Dean of Peterborough.

The want of an Annotated Edition of the Bible, in handy portions, suitable for

School use, has long been felt.

In order to provide Text-books for School and Examination purposes, the

Cambridge U niversity Press has arranged to publish the several books of the

Bible in separate portions at a moderate price, with introductions and explanatory

notes.

The Very Reverend J. J. S. Perowne, D.D., Dean of Peterborough, has

undertaken the general editorial supervision of the work, assisted by a staff of

eminent coadjutors. Some of the books have, been already edited or undertaken

by the following gentlemen :

Rev. A. Carr, M.A., Assistant Master at Wellington College.

Rev. T. K. Cheyne, M.A., D.D., late Fellow ofBalliol College^ Oxford.

Rev. S. Cox, Nottingham.

Rev. A. B. Davidson, D.D., Professor of Hebrew^ Edinburgh.

The Ven. F. W. Farrar, D.D., Archdeacon of Westminster.

Rev. C. D. Ginsburg, LL.D.

Rev. A. E. Humphreys, M.A., late Fellow of Trinity College, Cambridge.

Rev. A. F. Kirkpatrick, M.A., Fellow of Trinity College, Regius Professor

ofHebrew.

Rev. J. J. Lias, M.A., late Professor at St David’s College, Lampeter.

Rev. J. R. Lumby, D.D., Norrisian Professor ofDivinity.

Rev. G. F. Maclear, D.D., Warden of St Augustine's College, Canterbury.

Rev. H. C. G. Moule, M.A., late Fellow of Trinity College, Principal of
Ridley Hall, Cambridge.

Rev. W. F. Moulton, D.D., Head Master of the Leys School, Cambridge.

Rev. E. H. Perowne, D.D., Master of Corpus Christi College, Cambridge,

Examining Chaplain to the Bishop of St Asaph.

The Veil. T. T. Perowne, M.A., Archdeacon ofNorwich.

Rev. A. Plummer, M.A., D.D., Master of University College, Durham.

The Very Rev. E. H. Plumptre, D.D., Dean of Wells.

Rev. W. SiMCOX, M.xA.., Rector of Weyhill, Hants.

W. Robertson Smith, M.A., Lord AlmoneAs Professor of Arabic.

Rev. H. D. M. Spence, M.A., Hon. Canon of Gloiicester Cathedral.

Rev. A. W. Streane, M.A., Eellow of Corpus Christi College, Cambridge.

London : C. J. Cla v Son, Cambridge University Press Warehouse,
Ave Maria Lane.
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THE CAMBRIDGE BIBLE FOR SCHOOLS & COLLEGES.
Continued.

Now Ready. Cloth, Extra Fcap. 8vo.

THE BOOK OF JOSHUA. By the Rev. G. F. Maclear, D.D.
.
With 1 Maps. 2 s. 6d.

THE BOOK OF JUDGES. By the Rev. J. J. Lias, M.A.
With Map. 3^. 6d.

THE FIRST BOOK OF SAMUEL. By the Rev. Professor
Kirkpatrick, M.A. With Map. 3^. ()d.

THE SECOND BOOK OF SAMUEL. By the Rev. Professor
Kirkpatrick, M.A. With 2 Maps. 3^. (id.

THE BOOK OF JOB. By the Rev. A. B. Davidson, D.D. 5^.

THE BOOK OF ECCLESIASTES. By the Very Rev. E. H.
Plumptre, D.D., Dean of Wells, gs.

THE BOOK OF JEREMIAH. By the Rev. A. W. Streane,
M.A. With Map. 4^-. 6d.

THE BOOK OF HOSEA. By Rev. T. K. Cheyne, M.A., D.D. 3^-.

THE BOOKS OF OBADIAH AND JONAH. By Archdeacon
Perowne. 2j. 6d.

THE BOOK OF MICAH. By the Rev. T. K. Cheyne, M.A., D.D.
IS. 6d.

THE GOSPEL ACCORDING TO ST MATTHEW. By the
Rev. A. Carr, M.A. With 2 Maps. 2s. 6d.

THE GOSPEL ACCORDING TO ST MARK. By the ReY.
G. F. Maclear, D.D. With 4 Maps. 2s. 6d.

THE GOSPEL ACCORDING TO ST LUKE. By Archdeacon
F. W. Farrar. With 4 Maps. 4^. 6d.

THE GOSPEL ACCORDING TO ST JOHN. By the Rev.
A. Plummer, M.A., D.D. With 4 Maps. 4.$-. 6d.

THE ACTS OF THE APOSTLES. By the Rev. Professor
Lumby, D.D. With 4 Maps. 4^. 6d.

THE EPISTLE TO THE ROMANS. By the Rev. H. C. G.
Moule, M.A. 3J. 6d.

THE FIRST EPISTLE TO THE CORINTHIANS. By the Rev.

J. J. Lias, M.A. With a Map and Plan. 2s.

THE SECOND EPISTLE TO THE CORINTHIANS. By the
Rev. J. J. Lias, M.A. 2^.

THE EPISTLE TO THE HEBREWS. By Archdeacon Farrar.
3^-. 6d.

THE GENERAL EPISTLE OF ST JAMES. By the Very Rev.
E. H. Plumptre, D.D., Dean of Wells, is. 6d.

THE EPISTLES OF ST PETER AND ST JUDE. By the
same Editor. 2s. 6d.

THE EPISTLES OF ST JOHN. By the Rev. A. Plummer,
M.A., D.D. 3J-. 6d.

London: C. J. Clay Son^ Cambridge University Press Warehouse^
Ave Maria Lane.
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THE CAMBRIDGE BIBLE FOR SCHOOLS & COLLEGES.

Continued.

Preparing.

THE BOOK OF GENESIS. By Professor Robertson Smith, M.A.

THE BOOKS OF EXODUS, NUMBERS AND DEUTERO-
NOMY. By the Rev. C. D. Ginsburg, LL.D.

THE BOOK OF EZEKIEL. By the Rev. A. B. Davidson, D.D.

THE BOOKS OF HAGGAI AND ZECHARIAH. By Arch-
deacon Perowne.

THE EPISTLES TO THE EPHESIANS, PHILIPPIANS,
COLOSSIANS AND PHILEMON. By the Rev. H. C. G. Moule, M.A.

THE BOOK OF REVELATION. By the Rev. W. Simcox, M.A.

THE CAMBEIDGE GEEEK TESTAMENT
FOR SCHOOLS AND COLLEGES,

with a Revised Text, based on the most recent critical authorities, and
English N otes, prepared under the direction of the General Editor,

The Very Reverend J. J. S. PEROWNE, D.D.,

DEAN OF PETERBOROUGH.

Now Eeady.

THE GOSPEL ACCORDING TO ST MATTHEW. By the
Rev. A. Carr, M.A. With 4 Maps. 4s. 6d.

“ With the ‘ Notes/ in the volume before us, we are much pleased
; so far as we have searched,

they are scholarly and sound. The quotations from the Classics are apt ; and the references to
modern Greek form a pleasing feature.”

—

The Churchman.
“ Copious illustrations, gathered from a great variety of sources, make his notes a very valu-

able aid to the student. They are indeed remarkably interesting, while all explanations on
meanings, applications, and the like are distinguished by their lucidity and good sense.”

—

Pall Mall Gazette.

THE GOSPEL ACCORDING TO ST MARK. By the Rev.
G. F. Maclear, D.D. With 3 Maps. 4^. (>d.

“The Cambridge Greek Testament, of which Dr Maclear’s edition of the Gospel according to
St Mark is a volume, certainly supplies a want. Without pretending to compete with the leading
commentaries, or to embody very much original research, it forms a most satisfactory introduction
to the study of the New Testament in the original . . . Dr Maclear’s introduction contains all that
is known of St Mark’s life, with references to passages in the New Testament in which he is

mentioned ; an account of the circumstances in which the Gospel was composed, with an estimate
of the influence of St Peter’s teaching upon St Mark ; an excellent sketch of the special character-
istics of this Gospel ; an analysis, and a chapter on the text of the New Testament generally . . .

The work is completed by three good maps.”

—

Saturday Review.
“The Notes, which are admirably put together, seem to contain all that is necessary for the

guidance of the student, as well as a judicious selection of passages from various sources illustrat-

ing scenery and manners.”

—

Academy.

THE GOSPEL ACCORDING TO ST LUKE. By Archdeacon
Farrar. With 4 Maps. 6j.

THE GOSPEL ACCORDING TO ST JOHN. By the Rev. A.
Plummer, M.A., D.D. With 4 Maps. 6l

“A valuable addition has also been made to ‘The Cambridge Greek Testament for Schools,’

Dr Plummer’s notes on ‘the Gospel according to St John’ are scholarly, concise, and instructive,

and embody the results of much thought and wide reading.”

—

Expositor.

THE ACTS OF THE APOSTLES. By the Rev. Prof. Lumby.
\_Nearly ready.

London : C. J. Cla v Son, Cambridge University Press Warehouse,

Ave Maria Lane.
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THE PITT PRESS SERIES.

I. GREEK.
THE ANABASIS OF XENOPHON, Books I. III. IV.

and V. With a Map and English Notes by Alfred Pretor, M.A., Fellow
of St Catharine’s College, Cambridge ; Editor of Persius and Cicero ad Atti-

cum Book I. IS. each.
“ In Mr PretoPs edition of the Anabasis the text of Kiihner has been followed in the main,

while the exhaustive and admirable notes of the great German editor have been largely utilised.

These notes deal with the minutest as well as the most important difficulties in construction, and
all questions of history, antiquity, and geography are briefly but very effectually elucidated.”

—

The
Examiner.

“ We welcome this addition to the other books of the Anabasis so ably edited by Mr Pretor.
Although originally intended for the use of candidates at the university local examinations, yet
this edition will be found adapted not only to meet the wants of the junior student, but even
advanced scholars will find much in this work that will repay its perusal.”

—

The Schoolmaster.
“Mr Pretor’s ‘Anabasis of Xenophon, Book IV.’ displays a union of accurate Cambridge

scholarship, with experience of what is required by learners gained in examining middle-class
schools. The text is large and clearly printed, and the notes explain all difficulties. . . . Mr
Pretor’s notes seem to be all that could be wished as regards grammar, geography, and other

matters.”

—

The Academy.

BOOKS II. VI. and VII. By the same Editor. 2s. 6d. each.

“Another Greek text, designed it would seem for students preparing for the local examinations,

is ‘Xenophon’s Anabasis,’ Book II., with English Notes, by Alfred Pretor, M.A. The editor has
exercised his usual discrimination in utilising the text and notes of Kuhner, with the occasional

assistance of the best hints of Schneider, Vollbrecht and Macmichael on critical matters, and of

Mr R. W. Taylor on points of history and geography. . . When Mr Pretor commits himself to

Commentator’s work, he is eminently helpful. . . Had we to introduce a young Greek scholar

to Xenophon, we should esteem ourselves fortunate in having Pretor’s text-book as our chart and
guide.”

—

Contemporary Review.

THE ANABASIS OF XENOPHON, by A. Pretor, M.A.,
Text and Notes, complete in two Volumes. 7T. ^d.

AGESILAUS OF XENOPHON. The Text revised
with Critical and Explanatory Notes, Introduction, Analysis, and Indices.

By H. Hailstone, M.A., late Scholar of Peterhouse, Cambridge, Editor of

Xenophon’s Hellenics, etc. 2t. (>d.

ARISTOPHANES—RANAE. With English Notes and
Introduction by W. C. Green, M.A., late Assistant Master at Rugby
School. 3T. (id.

ARISTOPHANES—AVES. By the same Editor. New
Edition, y. 6d.

“The notes to both plays are excellent. Much has been done in these two volumes to render
the study of Aristophanes a real treat to a hoy instead of a drudgery, by helping him to under-
stand the fun and to express it in his mother tongue.”

—

The Examiner.

ARISTOPHANES—PLUTUS. By the same Editor. is.6d.

EURIPIDES. HERCULES FURENS. With Intro-
ductions, Notes and Analysis. ByJ. T. Hutchinson, M.A., Christ’s College,

and A. Gray, M.A., Fellow of Jesus College. 2 J-.

“Messrs Hutchinson and Gray have produced a careful and useful edition.”

—

Saturday
Re7)iew.

THE HERACLEID^ OF EURIPIDES, with Introduc-
tion and Critical Notes by E. A. Beck, M.A., Fellow of Trinity Hall. 3^. 6d.

London : C. y. Cla y Son., Cambridge University Press Warehousey
Ave Maria Lane.
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LUCIANI SOMNIUM CHARON PISCATOR ET DE
LUCTU, with English Notes by W. E. Heitland, M.A., Fellow of

St John’s College, Cambridge. New Edition, with Appendix, ^s. 6d.

OUTLINES OF THE PHILOSOPHY OF ARISTOTLE.
Edited by E. Wallace, M.A. (See p. 30 .)

PLUTARCH’S LIVES OF THE GRACCHI. With In-
troduction, Notes and Lexicon by Rev. Hubert A. Holden, M.A., LL.D.,
sometime Fellow of Trinity College, Cambridge. Editor of Plutarch’s

Themistocles, etc. 6s.

II. LATIN.
M. T. CICERONIS DE AMICITIA. Edited by J. S.

Reid, M.L., Litt. D., Fellow and Assistant Tutor of Gonville and Caius
College, Cambridge. New Edition, with Additions. 3^. 6d.

“Mr Reid has decidedly attained his aim, namely, ‘a thorough examination of the Latinity
of the dialogue. ’ The revision of the text is most valuable, and comprehends sundry
acute corrections. . . . This volume, like Mr Reid’s other editions, is a solid gain to the scholar-
ship of the country.”

—

Athenceum.
”A more distinct gain to scholarship is Mr Reid’s able and thorough edition of the De

Amicitia of Cicero, a work of which, whether we regard the exhaustive introduction or the
instructive and most suggestive commentary, it would be difficult to speak too highly. . . . When
we come to the commentary, we are only amazed by its fulness in proportion to its bulk.
Nothing is overlooked which can tend to enlarge the learner’s general knowledge of Ciceronian
Latin or to elucidate the text.”—Saturday Review.

M. T. CICERONIS CATO MAJOR DE SENECTUTE.
Edited by J. S. Reid, M.L.

,
Litt. D. ^s. 6d.

“ The notes are excellent and scholarlike, adapted for the upper forms of public schools, and
likely to be useful even to more advanced students.”

—

Guardian.

M. T. CICERONIS ORATIO PRO ARCHIA POETA.
Edited by J. S. Reid, M.L., Litt. D. Revised Edition, 'is.

“ It is an admirable specimen of careful editing. An Introduction tells us everything we could
wish to know about Archias, about Cicero’s connexion with him, about the merits of the trial, and
the genuineness of the speech. The text is well and carefully printed. The notes are clear and
scholar-like. ... No boy can master this little volume without feeling that he has advanced a long
step in scholarship.”

—

The Academy.

M. T. CICERONIS PRO L. CORNELIO BALBO ORA-
TIO. Edited by J. S. Reid, M.L., Litt. D. u. 6d.

“ We are bound to recognize the pains devoted in the annotation of these two orations to the
minute and thorough study of their Latinity, both in the ordinary notes and in the textual
appendices.”

—

Saturday Review.

M. T. CICERONIS PRO P. CORNELIO SULLA
ORATIO. Edited by J. S. Reid, M.L.

, Litt. D. 3 ^-. 6d.
“ Mr Reid is so well known to scholars as a commentator on Cicero that a new work from him

scarcely needs any commendation of ours. His edition of the speech Pro Sulla is fully equal in

merit to the volumes which he has already published . . . It would be difficult to speak too highly
of the notes. There could be no better way of gaining an insight into the characteristics of
Cicero’s style and the Latinity of his period than by making a careful study of this speech with
the aid of Mr Reid’s commentary . . . Mr Reid’s intimate knowledge of the minutest details of
scholarship enables him to detect and explain the slightest points of distinction between the

usages of different authors and different periods . . . The notes are followed by a valuable
appendix on the text, and another on points of orthography

;
an excellent index brings the work

to a close.”

—

Saturday Review.

M. T. CICERONIS PRO CN. PLANCIO ORATIO.
Edited by H. A. Holden, LL.D., late Head Master of Ipswich School.

4J. 6d.
“As a book for students this edition can have few rivals. It is enriched by an excellent intro-

duction and a chronological table of the principal events of the life of Cicero ; while in its ap-
pendix, and in the notes on the text which are added, there is much of the greatest value. The
volume is neatly got up, and is in every way commendable.”

—

The Scotsman.

London : C. J. Cla y Son, Cambridge University Press Warehouse,
Ave Maria Lane.



26 PUBLICATIONS OF

M. T. CICERONIS IN Q. CAECILIUM DIVINATIO
ET IN C. VERREM ACTIO PRIMA. With Introduction and Notes
by W. E. PIeitland, M.A., and Herbert Cowie, M.A., Fellows of

St John’s College, Cambridge. 3 >r.

M. T. CICERONIS ORATIO PRO L. MURENA, with
English Introduction and Notes. By W. E. Heitland, M.A., Fellow
and Classical Lecturer of St John’s College, Cambridge. Second Edition,

carefully revised,
“ Those students are to be deemed fortunate who have to read Cicero’s lively and brilliant

oration for L. Murena with Mr Heitland’s handy edition, which may be pronounced ‘four-square’
in point of equipment, and which has, not without good reason, attained the honours of a

second edition.”

—

Sdturday Review.

M, T. CICERONIS IN GAIUM VERREM ACTIO
PRIMA. With Introduction and Notes. By H. Cowie, M.A., Fellow
of St John’s College, Cambridge, is. 6d,

M. T. CICERONIS ORATIO PRO T. A. MILONE,
with a Translation of Asconius’ Introduction, Marginal Analysis and
English Notes. Edited by the Rev. John Smyth Purton, B.D., late

President and Tutor of St Catharine’s College, 'is. 6d.

“The editorial work is excellently done.”

—

The Academy.

M. T. CICERONIS SOMNIUM SCIPIONIS. With In-
troduction and Notes. By W. D. Pearman, M.A., Head Master of Potsdam
School, Jamaica, ^s.

P. OVIDII NASONIS FASTORUM Liber VI. With
a Plan of Rome and Notes by A. Sidgwick, M.A., Tutor of Corpus Christ!

College, Oxford, u. (>d.

“ Mr Sidgwick’s editing of the Sixth Book of Ovid’s Fasti furnishes a careful and serviceable
volume for average students. It eschews ‘construes’ which supersede the use of the dictionary,

but gives full explanation of grammatical xisages and historical and mythical allusions, besides

illustrating peculiarities of style, true and false derivations, and the more remarkable variations ol

the text.”

—

Saturday Review.
“ It is eminently good and useful. . . . The Introduction is singularly clear on the astronomy of

Ovid, which is properly shown to be ignorant and confused ; there is an excellent little map of
Rome, giving just the places mentioned in the text and no more ; the notes are evidently written

by a practical schoolmaster.”

—

The Academy.

GAI lULI CAESARIS DE BELLO GALLICO COM-
MENT. I. II. HI. With Maps and English Notes by A. G. Peskett,
M.A., Fellow of Magdalene College, Cambridge. 3^.

“In an unusually succinct introduction he gives all the preliminary and collateral information
that is likely to be useful to a young student ; and, wherever we have examined his notes, we
have found them eminently practical and satisfying. , . The book may well be recommended for

careful study in school or college.”

—

Saturday Review

.

“The notes are scholarly, short, and a real help to the most elementary beginners in Latin
prose.”

—

The Exammer.

BOOKS IV. AND V. AND Book VII. by the same
Editor. 2s. each.

BOOK VI. AND BOOK VIII. by the same Editor.
IS. 6d. each.

London : C. y. Cla y Son^ Cambridge Unwersity Press Warehouse^
Ave Maria Lane.
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P. VERGILI MARONIS AENEIDOS Libri I, IL, III.,

IV., V., VI., VII., VIII., IX., X., XI., XII. Edited with Notes by A.
SiDGWiCK, M.A., Tutor of Corpus Christi College, Oxford. li'. (id. each.

“Much more attention is given to the literary aspect of the poem than is usually paid to it in

editions intended for the use of beginners. The introduction points out the distinction between
primitive and literary epics, explains the purpose of the poem, and gives an outline of the story.”
—Saturday Review.

“ Mr Arthur Sidgwick’s ‘Vergil, Aeneid, Book XII.’ is worthy of his reputation, and is dis*

tinguished by the same acuteness and accuracy of knowledge, appreciation of a boy’s difficulties

and ingenuity and resource in meeting them, which we have on other occasions had reason to

praise in these pages.”

—

T/ie Academy.
“As masterly in its clearly divided preface and appendices as in the sound and independent

character of its annotations. . . . There is a great deal more in the notes than mere compilation
and suggestion. ... No difficulty is left unnoticed or unhandled.”

—

Saturday Review.
“This edition is admirably adapted for the use of junior students, who will find in it the result

of much reading in a condensed form, and clearly expressed.”

—

Cambridge Independent Press.

BOOKS VII. VIII. in one volume. 3^“.

BOOKS IX. X. in one volume. 3^-.

BOOKS X., XL, XII. in one volume. 3^-. 6d.

QUINTUS CURTIUS. A Portion of the History.
(Alexander in India.) By W. E. Heitland, M. A., Fellow and Lecturer
of St John’s College, Cambridge, and T. E. Raven, B.A., Assistant Master
in Sherborne School, ^s. 6d.

“Equally commendable as a genuine addition to the existing stock of school-books is

Alexander in India, a compilation from the eighth and ninth books of Curtius, edited for
the Pitt Press by Messrs Heitland and Raven. . . . The work of Curtius has merits of its

own, which, in former generations, made it a favourite with English scholars, and which still

make it a popular text- book in Continental schools The reputation of Mr Heitland is a
sufficient guarantee for the scholarship of the notes, which are ample without being excessive,
and the book is well furnished with all that is needful in the nature of maps, indexes, and ap-
pendices.” —Acade?ny.

M. ANNAEI LUCANI PHARSALIAE LIBER
PRIMUS, edited with English Introduction and Notes by W. E. Heitland,
M.A. and C. E. Haskins, M.A., Fellows and Lecturers of St John’s Col-
lege, Cambridge, u. (d.

“A careful and scholarlike production.”

—

Times.
“ In nice parallels of Lucan from Latin poets and from Shakspeare, Mr Haskins and Mr

Heitland deserve praise.”

—

Saturday Review.

BEDA’S ECCLESIASTICAL HISTORY, BOOKS
HI., IV., the Text from the very ancient MS. in the Cambridge University
Library, collated with six other MSS. Edited, with a life from the German of
Ebert, and with Notes, &c. by J. E. B. Mayor, M.A., Professor of Latin,

andj. R. Lumby, D.D., Norrisian Professor of Divinity. Revised edition.

IS. (id.

“To young students of English History the illustrative notes will be of great service, while
the study of the texts will be a good introduction to Mediaeval Latin.”

—

The Nonconformist.
“In Bede’s works Englishmen can go back to origines of their history, unequalled for

form and matter by any modern European nation. Prof. Mayor has done good service in ren-
dering a part of Bede’s greatest work accessible to those who can read Latin with ease. He
has adorned this edition of the third and fourth books of the Ecclesiastical History’ with that
amazing erudition for which he is unrivalled among Englishmen and rarely equalled by Germans.
And however interesting and valuable the text may be, we can certainly apply to his notes
the expression. La sauce vaut mieux que le poisson. They are literally crammed with interest-
ing information about early English life. For though ecclesiastical in name, Bede’s history treats
of all parts of the national life, since the Church had points of contact with all.”

—

Examiner.

Books I. and 1 1. In the Press.

Eandon : C. y. Cla v SoN^ Cambridge University Press Warehouse^
Ave Maria Lane.
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III. FRENCH.
LE BOURGEOIS GENTILHOMME, Comddie-Ballet en

Cinq^ Actes. Par J.-B, Poquelin de MoliI^re (1670). With a life of
Moliere and Grammatical and Philological Notes. By the Rev. A. C.
Clapin, M.A., St John’s College, Cambridge, and Bachelier-es-Lettres of
the University of France, i^.

LA PICCIOLA. By X. B. Saintine. The Text, with
Introduction, Notes and Map, by the same Editor, 2J.

LA GUERRE. By Mm. Erckmann-Cpiatrian. With
Map, Introduction and Commentary by the same Editor. 3^'.

LAZARE HOCHE—PAR EMILE DE BONNECHOSE.
With Three Maps, Introduction and Commentary, by C. Colbeck, M.A.,
late Fellow of Trinity College, Cambridge; Assistant Master at Harrow
School, ^s.

LE VERRE D’EAU. A Comedy, by SCRiBE. With a
Biographical Memoir, and Grammatical, Literary and Historical Notes. By
the same Editor.

y It may be national prejudice, but we consider this edition far superior to any of the series
which hitherto have been edited exclusively by foreigners. Mr Colbeck seems better to under-
stand the wants and difficulties of an English boy. The etymological notes especially are admi-
rable. . . . The historical notes and introduction are a piece of thorough honest work.”—Journal
0/Education.

-HISTOIRE DU SIECLE DE LOUIS XIV PAR
VOLTAIRE. Parti. Chaps. I.—XIII. Edited with Notes Philological and
Historical, Biographical and Geographical Indices, etc. by Gustave Masson,
B.A. Univ. Gallic., Officier d’Academie, Assistant Master of Harrow School,
and G. W. Prothero, M.A., Fellow and Tutor of King’s College, Cam-
bridge. 'IS. 6d.

“Messrs Masson and Prothero have, to judge from the first part of their work, performed
with much discretion and care the task of editing Voltaire’s de Louis XIV ior the ‘Pitt

Press Series.’ Besides the usual kind of notes, the editors have in this case, influenced by Vol-
taire’s ‘summary way of treating much of the history,’ given a good deal of historical informa-
tion, in which they have, we think, done well. At the beginning of the book will be found
excellent and succinct accounts of the constitution of the French army and Parliament at the
period treated of.”—Saturday Review.

Part II. Chaps. XIV.—XXIV. With Three Maps
of the Period. By the same Editors. 2s. 6d.

Part III. Chap. XXV. to the end. By the same
Editors. 2s. 6d.

M. DARU, par M. C. A. Sainte-Beuve, (Causeries du
Lundi, Vol. IX.). With Biographical Sketch of the Author, and Notes
Philological and Historical. By Gustave Masson. 2s.

LA SUITE DU MENTEUR. A Comedy in Five Acts,
by P. Corneille. Edited with Fontenelle’s Memoir of the Author, Voltaire’s

Critical Remarks, and Notes Philological and Historical. By Gustave
Masson. 2s.

LA JEUNE SIBERIENNE. LE LEPREUX DE LA
CIT£ D’AOSTE. Tales by Count Xavier de Maistre. With Bio-

graphical Notice, Critical Appreciations, and Notes. By G. Masson. 2 s.

London : C. J. ClA v &= Sox, Cambridge University Press Warehouse,
Ave Mai'ia Lane.
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LE DIRECTOIRE. (Considerations sur la Revolution
Fran^aise. Troisieme et quatrieme parties.) Par Madame la Baronne de
Stael-Holstein. With a Critical Notice of the Author, a Chronological
Table, and Notes Historical and Philological, by G. Masson, B.A., and
G. W. Prothero, M.A. Revised and enlarged Edition. 2s.

“Prussia under Frederick the Great, and France under the Directory, bring us face to face

respectively with periods of history which it is right should be known thoroughly, and which
are well treated in the Pitt Press volumes. The latter in particular, an extract from the
world-known work of Madame de Stael on the French Revolution, is beyond all praise for

the excellence both of its style and of its matter.”

—

Times.

DIX ANNEES D’EXIL. Livre II. Chapitres i— 8.

Par Madame la Baronne De Stael-Holstein. With a Biographical

Sketch of the Author, a Selection of Poetical Fragments by Madame de
StaeFs Contemporaries, and Notes Historical and Philological. By Gustave
Masson and G. W. Prothero, M.A. Revised and enlarged edition, is.

FREDEGONDE ET BRUNEHAUT. A Tragedy in Five
Acts, by N. Lemercier. Edited with Notes, Genealogical and Chrono-

logical Tables, a Critical Introduction and a Biographical Notice. By
Gustave Masson, is.

LE VIEUX CELIBATAIRE. A Comedy, by Collin
D’Harleville. With a Biographical Memoir, and Grammatical, Literary

and Historical Notes. By the same Editor, is.

“ M. Masson is doing good work in introducing learners to some of the less-known French
play-writers. The arguments are admirably clear, and the notes are not too abundant.”

—

Academy.

LA METROMANIE, A Comedy, by PiRON, with a Bio-
graphical Memoir, and Grammatical, Literary and Historical Notes. By the

same Editor, is.

LASCARIS, OU LES GRECS DU XV^ SIECLE,
Nouvelle Historique, par A, F. Villemain, with a Biographical Sketch of

the Author, a Selection of Poems on Greece, and Notes Historical and
Philological. By the same Editor, is.

LETTRES SUR L’HISTOIRE DE FRANCE (XIII—
XXIV.). Par Augustin Thierry. By Gustave Masson, B.A. and
G. W. Prothero, M.A. \Nearly ready.

IV. GERMAN.
DIE KARAVANE von Wilhelm Hauff. Edited with

Notes by A. Schlottmann, Ph. D. 3^. ^d.

CULTURGESCHICHTLICHE NOVELLEN, von W. H.
Riehl, with Grammatical, Philological, and Historical Notes, and a Com-
plete Index, by H. J. Wolstenholme, B.A. (Lond.). 4s. 6d.

ERNST, HERZOG VON SCHWABEN. UHLAND. With
Introduction and Notes. By H. J. Wolstenholme, B.A. (Lond.),

Lecturer in German at Newnham College, Cambridge. 3J. 6d.

ZOPF UND SCHWERT. Lustspiel in fiinf Aufzugen von
Karl Gutzkow. With a Biographical and Historical Introduction, English
Notes, and an Index. By the same Editor. 3^. 6d.

“We are glad to be able to notice a careful edition of K. Gutzkow’s amusing comedy
‘Zopf and Schwert’ by Mr H. J. Wolstenholme. . . . These notes are abundant and contain
references to standard grammatical works.”

—

Academy.

ifnabenja^re. (1749—1759.) GOETHE’S BOY-
HOOD: being the First Three Books of his Autobiography. Arranged
and Annotated by Wilhelm Wagner, Ph, D., late Professor at the
Johanneum, Hamburg, is.

London: C. J. Clay ^ Son^ Cambridge University Press Warehouse.,
Ave Maria Lane.
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HAUFF. DAS WIRTHSHAUS IM SPESSART. Edited
by A. vScHLOTTMANN, Ph, D., late Assistant Master at Uppingham School.

3^. (id.

DER OBERHOF. A Tale of Westphalian Life, by Karl
IMHERMANN. With a Life of Immermann and English Notes, by Wilhelm
Wagner, Ph.D,, late Professor at the Johanneum, Hamburg, ^s.

A BOOK OF GERMAN DACTYLIC POETRY. Ar-
ranged and Annotated by the same Editor. 3J.

Der crfte Rreujjug (THE FIRST CRUSADE), by Fried-
RICH VON Raumer. Condensed from the Author’s ‘History of the Hohen-
staufen’, with a life of Raumer, two Plans and English Notes. By
the same Editor. 2s.

“Certainly no more interesting book could be made the subject of examinations. The story
of the First Crusade has an undying interest. The notes are, on the whole, good.”

—

Educational
Times.

A BOOK OF BALLADS ON GERMAN HISTORY.
Arranged and Annotated by the same Editor. 2s.

“It carries the reader rapidly through some of the most important incidents connected with
the German race and name, from the invasion of Italy by the Visigoths under their King Alaric,

down to the Franco-German War and the installation of the present Emperor. The notes supply
very well the connecting links between the successive periods, and exhibit in its various phases of
growth and progress, or the reverse, the vast unwieldy mass which constitutes modern Germany.”
— Times.

DER STAAT FRIEDRICHS DES GROSSEN. By G.
Freytag. With Notes. By the same Editor. 2s.

“Prussia under Frederick the Great, and France under the Directory, bring us face to face

respectively with periods of history which it is right should be known thoroughly, and which
are we" t.-eated in the Pitt Press volumes.”

—

Times.

GOETHE’S HERMANN AND DOROTHEA. With
an Introduction and Notes. By the same Editor. Revised edition by J. W.
Cartmell, M.A. y. 6d.

“The notes are among the best that we know, with the reservation that they are often too

abundant. ”—.<4cademy.

Dae 3a^r 1813 (The Year 1813), by F. Kohlrausch.
With English Notes. By W. Wagner. 2s.

V. ENGLISH.
JOHN AMOS COMENIUS, Bishop of the Moravians. His

Life and Educational Works, by S. S. Laurie, A.M., F.R.S.E., Professor of

the Institutes and History of Education in the University of Edinburgh.

Second Edition, revised, ^s. 6d.

OUTLINES OF THE PHILOSOPHY OF ARISTOTLE.
Compiled by Edwin Wallace, M.A., LL.D. (St Andrews), late Fellow

of Worcester College, Oxford. Third Edition Enlarged. 4.5-. 6d.

“A judicious selection of characteristic passages, arranged in paragraphs, each of which is

preceded by a masterly and perspicuous English analysis.”

—

Scotsman.

“ Gives in a comparatively small compass a very good sketch of Aristotle’s teaching.”—6'aA

Review.

THREE LECTURES ON THE PRACTICE OF EDU-
CATION. Delivered in the University of Cambridge in the Easter Term,

1882, under the direction of the Teachers’ Training Syndicate. 2s.

“ Like one of Bacon’s Essays, it handles those things in which the writer’s life is most conver-

sant, and it will come home to men’s business and bosoms. Like Bacon’s Essays, too, it is full of

apophthegms.”— Journal ofEducation.

London : C. J. ClA Y 6^ Son., Cambridge University Press Warehouse,
Ave Maria Lane.
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GENERAL AIMS OF THE TEACHER, AND FORM
MANAGEMENT. Two Lectures delivered in the University of Cambridge
in the Lent Term, 1883, by F. W. Farrar, D.D. Archdeacon of West-
minster, and R. B. Poole, B.D. Head Master of Bedford Modern School,

rj. ()d.

MILTON’S TRACTATE ON EDUCATION. A fac-

simile reprint from the Edition of 1673. Edited, with Introduction and
Notes, by Oscar Browning, M.A., Fellow and Lecturer of King’s College,

Cambridge, and formerly Assistant Master at Eton College, 'is.

“A separate reprint of Milton’s famous letter to Master Samuel Hartlib was a desideratum,
and we are grateful to Mr Browning for his elegant and scholarly edition, to which is prefixed the

careful resinne of the work given in his ‘History of Educational Theories.’”

—

Journal of
Education.

LOCKE ON EDUCATION. With Introduction and Notes
by the Rev. R. H. Quick, M.A. 3J. (id.

“The work before us leaves nothing to be desired. It is of convenient form and reasonable
price, accurately printed, and accompanied by notes which are admirable. There is no teacher
too young to find this book interesting; there is no teacher too old to find it profitable.”

—

The
School Bulletin, New York,

THE TWO NOBLE KINSMEN, edited with Intro-
duction and Notes by the Rev. Professor Skeat, M.A., formerly Fellow
of Christ’s College, Cambridge. • 3^. (d.

*
‘ This edition of a play that is well worth study, for more reasons than one, by so careful a

scholar as Mr Skeat, deserves a hearty welcome.”

—

Athenceum.

“Mr Skeat is a conscientious editor, and has left no difficulty unexplained.”

—

Times.

BACON’S HISTORY OF THE REIGN OF KING
HENRY VII. With Notes by the Rev. J. Rawson Lumby, D.D., Nor-
risian Professor of Divinity ; late Fellow of St Catharine’s College. 3^-.

SIR THOMAS MORE’S UTOPIA. With Notes by the
Rev. J. Rawson Lumby, D.D., Norrisian Professor of Divinity

;
late Fellow

of St Catharine’s College, Cambridge. ^s. 6d.

“To Dr Lumby we must give praise unqualified and unstinted. He has done his work
admirably Every student of history, every politician, every social reformer, every one
interested in literary curiosities, every lover of English should buy and carefully read Dr
Lumby’s edition of the ‘Utopia.’ We are afraid to say more lest we should be thought ex-
travagant, and our recommendation accordingly lose part of its force.”

—

The Teacher.

“ It was originally written in Latin and does not find a place on ordinary bookshelves. A very
great boon has therefore been conferred on the general English reader by the managers of the
Pitt Press Series, in the issue of a convenient little volume of More's Utopia not in the original
Latin, but in the quaint English Translation thereof made by Raphe Robynson, which adds a
linguistic interest to the intrinsic merit of the work. . . . All this has been edited in a most com-
plete and scholarly fashion by Dr J. R. Lumby, the Norrisian Professor of Divinity, whose name
alone is a sufficient warrant for its accuracy. It is a real addition to the modern stock of classical
English literature. ”

—

Guardian.

MORE’S HISTORY OF KING RICHARD HI. Edited
with Notes, Glossary and Index of Names. By J. Rawson Lumby, D.D.
Norrisian Professor of Divinity, Cambridge; to which is added the conclusion
of the History of King Richard HI. as given in the continuation of Hardyng’s
Chronicle, London, 1543. 3^'. 6d.

A SKETCH OF ANCIENT PHILOSOPHY FROM
THALES TO CICERO, by Joseph B. Mayor, M.A., late Professor of
Moral Philosophy at King’s College, London. 3^. 6d.

“Professor Mayor contributes to the Pitt Press Series A Sketch of Ancient Philosophy in
which he has endeavoured to give a general view of the philosophical systems illustrated by the
genius of the masters of metaphysical and ethical science from Thales to Cicero. In the course
of his sketch he takes occasion to give concise analyses of Plato’s Republic, and of the Ethics and
Politics of Aristotle ; and these abstracts will be to some readers not the least useful portions of
the book.”

—

The Guardian.

\Other Volumes are in preparation?^

London: C. J. Clay Son., Cambridge University Press Warehouse,
Ave Maria Lane.



®ntter£(ttp of etamfirfiigf.

LOCAL EXAMINATIONS.
Examination Papers, for various years, with the Regulations for the

Examination. Demy 8vo. 2s. each, or by Post, 7.s. 2d.

Class Lists, for various years, Boys ij-.. Girls 6d.

Annual Reports of the Syndicate, with Supplementary Tables showing
the success and failure of the Candidates. 2s. each, by Post 2s. '^d.

HIGHER LOCAL EXAMINATIONS.
Examination-Papers for various years, to which are added the Regu-

lationsfor the Examination. Demy 8vo. 2s. each, by Post 2s. 2d.

Class Lists, for various years, is. By post, is. 2d.

Reports of the Syndicate. Demy 8vo. u., by Post is. 2d.

LOCAL LECTURES SYNDICATE.
Calendar for the years 1875—9. Fcap. Svo. cloth. 2j'.; for 1875—80. 2s.;

for 1880—81. IS.

TEACHERS’ TRAINING SYNDICATE.
Examination Papers for various years, to which are added the Regu-

lations for the Examination. Demy 8vo. 6^., by Post "]d.

CAMBRIDGE UNIVERSITY REPORTER.
Published by Authority.

Containing all the Official Notices of the University, Reports of

Discussions in the Schools, and Proceedings of the Cambridge
Philosophical, Antiquarian, and Philological Societies. 3^. weekly.

CAMBRIDGE UNIVERSITY EXAMINATION PAPERS.
These Papers are published in occasional numbers every Term, and in

volumes for the Academical year.

VoL. XII. Parts 160 to 176. Papers for the Year 1882—83, cloth.

VoL. XIII. „ 177 to 195. „ „ 1883—84, iss. cloth.

Oxford and Cambridge Schools Examinations.
Papers set in the Examination for Certificates, July, 1882. is. 6d.

List of Candidates who obtained Certificates at the Examinations
held in 1883 and 1884 ;

and Supplementary Tables. 6d.

Regulations of the Board for 1885. gd.

Report of the Board for the year ending Oct. 31, 1884. is.

Studies from the Morphological Laboratory in the Uni-
versity of Cambridge. Edited by Adam Sedgwick, M.A., Fellow and
Lecturer of Trinity College, Cambridge. Vol. II. Part I. Royal 8vo. loi-.

Honbon: c. j. clay and son.
CAMBRIDGE UNIVERSITY PRESS WAREHOUSE,

AVE MARIA LANE.

Cambridge; printed by c. j. clay, m.a. and son, at the university press.



mmmmi urn ^ay 1 4 '^fr4




